March 2025 • 2025ApJ...981L...9P
Abstract • The James Webb Space Telescope (JWST) is opening new frontiers of transient discovery and follow-up at high redshift. Here we present the discovery of a spectroscopically confirmed Type Ia supernova (SN Ia; SN 2023aeax) at z = 2.15 with JWST, including a NIRCam multiband light curve. SN 2023aeax lands at the edge of traditional low-z cosmology cuts because of its blue color (peak rest-frame B ‑ V ∼ ‑0.3) but with a normal decline rate (Δm15(B) ∼ 1.25), and applying a fiducial standardization with the BayeSN model we find the SN 2023aeax luminosity distance is in ∼0.1σ agreement with ΛCDM. SN 2023aeax is only the second spectroscopically confirmed SN Ia in the dark matter–dominated Universe at z > 2 (the other is SN 2023adsy), giving it rare leverage to constrain any potential evolution in SN Ia standardized luminosities. Similar to SN 2023adsy (B ‑ V ∼ 0.8), SN 2023aeax has a fairly extreme (but opposite) color, which may be due to the small sample size or a secondary factor, such as host galaxy properties. Nevertheless, the SN 2023aeax spectrum is well represented by normal low-z SN Ia spectra, and we find no definitive evolution in SN Ia standardization with redshift. Still, the first two spectroscopically confirmed z > 2 SNe Ia have peculiar colors and combine for a ∼1σ distance slope relative to ΛCDM, though in agreement with recent SN Ia cosmological measurements.
Links