IPAC, located on the Caltech campus, is not under direct threat from local fires at this time, though it is subject to the effects of strong winds and poor air quality. Many members of the IPAC community have been impacted by these events, and IPAC will follow Caltech guidance on closures and safe operations. For more information, visit Caltech’s Emergency Updates page at http://www.caltech.edu/emergency.
Iras-allsky
Goals

Overview: The Great Observatories All-sky LIRG Survey (GOALS) combines imaging and spectroscopic data from NASA's Spitzer, Hubble, Chandra, and GALEX space-borne observatories in a comprehensive study of the most luminous infrared-selected galaxies in the local Universe. In a JWST/ERS program, four nearby LIRGs selected from the GOALS sample to have a range of properties, such as relative starburst and AGN power, merger stage, luminosity, infrared spectral slope, and optical depth, are being observed. GOALS is led by a large team of IPAC scientists, and related data products and tools are hosted on IRSA.

The Great Observatories All-sky LIRG Survey (GOALS) was selected as a Spitzer cycle 3 Legacy Science program. It combines imaging and spectroscopic data from NASA's Spitzer, Hubble, Chandra and GALEX space-borne observatories in a comprehensive study of the most luminous infrared-selected galaxies in the local Universe. GOALS is led by a large team of IPAC scientists, and related data products and tools are hosted at IRSA.

In a JWST/ERS program, four nearby LIRGs selected from the GOALS sample to have a range of properties, such as relative starburst and AGN power, merger stage, luminosity, infrared spectral slope, and optical depth, are being observed.

The LIRGs and ULIRGs targeted in GOALS span the full range of nuclear spectral types (type-1 and type-2 AGN, LINERs, and starbursts) and interaction stages (major mergers, minor mergers, and isolated galaxies). They provide an unbiased picture of the processes responsible for enhanced infrared emission in the local Universe, and are excellent analogs for infrared and sub-millimeter selected galaxies at high-redshift.