June
2023
•
2023A&A...674A.172E
Authors
•
Euclid Collaboration
•
Paterson, K.
•
Schirmer, M.
•
Copin, Y.
•
Cuillandre, J. -C.
•
Gillard, W.
•
Gutiérrez Soto, L. A.
•
Guzzo, L.
•
Hoekstra, H.
•
Kitching, T.
•
Paltani, S.
•
Percival, W. J.
•
Scodeggio, M.
•
Stanghellini, L.
•
Appleton, P. N.
•
Laureijs, R.
•
Mellier, Y.
•
Aghanim, N.
•
Altieri, B.
•
Amara, A.
•
Auricchio, N.
•
Baldi, M.
•
Bender, R.
•
Bodendorf, C.
•
Bonino, D.
•
Branchini, E.
•
Brescia, M.
•
Brinchmann, J.
•
Camera, S.
•
Capobianco, V.
•
Carbone, C.
•
Carretero, J.
•
Castander, F. J.
•
Castellano, M.
•
Cavuoti, S.
•
Cimatti, A.
•
Cledassou, R.
•
Congedo, G.
•
Conselice, C. J.
•
Conversi, L.
•
Corcione, L.
•
Courbin, F.
•
Da Silva, A.
•
Degaudenzi, H.
•
Dinis, J.
•
Douspis, M.
•
Dubath, F.
•
Dupac, X.
•
Ferriol, S.
•
Frailis, M.
•
Franceschi, E.
•
Fumana, M.
•
Galeotta, S.
•
Garilli, B.
•
Gillis, B.
•
Giocoli, C.
•
Grazian, A.
•
Grupp, F.
•
Haugan, S. V. H.
•
Holmes, W.
•
Hornstrup, A.
•
Hudelot, P.
•
Jahnke, K.
•
Kümmel, M.
•
Kiessling, A.
•
Kilbinger, M.
•
Kohley, R.
•
Kubik, B.
•
Kunz, M.
•
Kurki-Suonio, H.
•
Ligori, S.
•
Lilje, P. B.
•
Lloro, I.
•
Maiorano, E.
•
Mansutti, O.
•
Marggraf, O.
•
Markovic, K.
•
Marulli, F.
•
Massey, R.
•
Medinaceli, E.
•
Mei, S.
•
Meneghetti, M.
•
Meylan, G.
•
Moresco, M.
•
Moscardini, L.
•
Nakajima, R.
•
Niemi, S. -M.
•
Nightingale, J. W.
•
Nutma, T.
•
Padilla, C.
•
Pasian, F.
•
Pedersen, K.
•
Polenta, G.
•
Poncet, M.
•
Popa, L. A.
•
Raison, F.
•
Renzi, A.
•
Rhodes, J.
•
Riccio, G.
•
Rix, H. -W.
•
Romelli, E.
•
Roncarelli, M.
•
Rossetti, E.
•
Saglia, R.
•
Sartoris, B.
•
Schneider, P.
•
Secroun, A.
•
Seidel, G.
•
Serrano, S.
•
Sirignano, C.
•
Sirri, G.
•
Skottfelt, J.
•
Stanco, L.
•
Tallada-Crespí, P.
•
Taylor, A. N.
•
Tereno, I.
•
Toledo-Moreo, R.
•
Torradeflot, F.
•
Tutusaus, I.
•
Valenziano, L.
•
Vassallo, T.
•
Wang, Y.
•
Weller, J.
•
Zamorani, G.
•
Zoubian, J.
•
Andreon, S.
•
Bardelli, S.
•
Bozzo, E.
•
Colodro-Conde, C.
•
Di Ferdinando, D.
•
Farina, M.
•
Graciá-Carpio, J.
•
Keihänen, E.
•
Lindholm, V.
•
Maino, D.
•
Mauri, N.
•
Scottez, V.
•
Tenti, M.
•
Zucca, E.
•
Akrami, Y.
•
Baccigalupi, C.
•
Ballardini, M.
•
Biviano, A.
•
Borlaff, A. S.
•
Burigana, C.
•
Cabanac, R.
•
Cappi, A.
•
Carvalho, C. S.
•
Casas, S.
•
Castignani, G.
•
Castro, T.
•
Chambers, K. C.
•
Cooray, A. R.
•
Coupon, J.
•
Courtois, H. M.
•
Davini, S.
•
De Lucia, G.
•
Desprez, G.
•
Escartin, J. A.
•
Escoffier, S.
•
Ferrero, I.
•
Gabarra, L.
•
Garcia-Bellido, J.
•
George, K.
•
Giacomini, F.
•
Gozaliasl, G.
•
Hildebrandt, H.
•
Hook, I.
•
Kajava, J. J. E.
•
Kansal, V.
•
Kirkpatrick, C. C.
•
Legrand, L.
•
Loureiro, A.
•
Magliocchetti, M.
•
Mainetti, G.
•
Maoli, R.
•
Marcin, S.
•
Martinelli, M.
•
Martinet, N.
•
Martins, C. J. A. P.
•
Matthew, S.
•
Maurin, L.
•
Metcalf, R. B.
•
Monaco, P.
•
Morgante, G.
•
Nadathur, S.
•
Patrizii, L.
•
Pollack, J.
•
Porciani, C.
•
Potter, D.
•
Pöntinen, M.
•
Sánchez, A. G.
•
Sakr, Z.
•
Schneider, A.
•
Sefusatti, E.
•
Sereno, M.
•
Shulevski, A.
•
Stadel, J.
•
Steinwagner, J.
•
Valieri, C.
•
Valiviita, J.
•
Veropalumbo, A.
•
Viel, M.
•
Zinchenko, I. A.
Abstract
•
The Euclid mission will conduct an extragalactic survey over 15 000 deg2 of the extragalactic sky. The spectroscopic channel of the Near-Infrared Spectrometer and Photometer (NISP) has a resolution of R ~ 450 for its blue and red grisms that collectively cover the 0.93-1.89 µm range. NISP will obtain spectroscopic redshifts for 3 × 107 galaxies for the experiments on galaxy clustering, baryonic acoustic oscillations, and redshift space distortion. The wavelength calibration must be accurate within 5 Å to avoid systematics in the redshifts and downstream cosmological parameters. The NISP pre-flight dispersion laws for the grisms were obtained on the ground using a Fabry-Perot etalon. Launch vibrations, zero gravity conditions, and thermal stabilisation may alter these dispersion laws, requiring an in-flight recalibration. To this end, we use the emission lines in the spectra of compact planetary nebulae (PNe), which were selected from a PN database. To ensure completeness of the PN sample, we developed a novel technique to identify compact and strong line emitters in Gaia spectroscopic data using the Gaia spectra shape coefficients. We obtained VLT/X-shooter spectra from 0.3 to 2.5 µm for 19 PNe in excellent seeing conditions and a wide slit, mimicking Euclid's slitless spectroscopy mode but with a ten times higher spectral resolution. Additional observations of one northern PN were obtained in the 0.80-1.90 µm range with the GMOS and GNIRS instruments at the Gemini North Observatory. The collected spectra were combined into an atlas of heliocentric vacuum wavelengths with a joint statistical and systematic accuracy of 0.1 Å in the optical and 0.3 Å in the near-infrared. The wavelength atlas and the related 1D and 2D spectra are made publicly available.
The full spectral atlas, including Table A.1, and a copy of the spectra are available at the CDS via anonymous ftp to
cdsarc.cds.unistra.fr (ftp://130.79.128.5)or via
https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/674/A172
Links