A key direction in observational extragalactic astrophysics is the study of the evolution of galaxies and their black holes in the context of their local and large scale environments. This is now possible thanks to current and upcoming generations of large area photometric and spectroscopic surveys. Crucially, for a complete picture, such studies need to account for both unobscured and obscured star-formation and black hole growth. I will present current work in my group involving characterizing the environments of galaxies in 5 sq.deg of the XMM-LSS field which has extensive photometric and spectroscopic coverage. This includes constraints on dust obscured galaxies and AGN thanks to Herschel and SCUBA2 surveys. We use the same methodology as used for the COSMOS field, but now with a combined area >3x the size of COSMOS alone, we can explore the role of environment in galaxy build-up and quenching as well as the role of AGN therein -- all with improved statistics and over a larger range of environments. Lastly I will discuss the future prospects for even better galaxy properties characterization and improved sampling of the cosmic web thanks to several planned large area photometric and spectroscopic surveys.