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Microlensing basics: the Einstein ring radius
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Perfect alignment of a source and lensing mass yields the Einstein ring circular
image (which sets the angular scale for microlensing events).

θE =

√

2RS

D
where RS =

2GM

c2
and D =

DL

DS −DL

DS



Microlensing towards the Galactic Bulge
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■ RS ∼ 3× 103 for ML ∼ M⊙

■ D ∼ 8 kpc ∼ 2.6× 1020m

■ Hence: θE ∼ 5× 10−9 rad ∼ 1 milliarcsec (mas).

■ One conclusion: for Galactic events milliarcseconds + not really a lens,
phenomenon should be called millimiraging.

■ Three useful radii are the Einstein angle projected on to the three
relevant planes:

(a) rE = θEDL (lens)

(b) r̂E = θEDS (source)

(c) r̃E = θED (observer)



Point source point mass microlensing – single lens
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The basic thin lens equation in units of the Einstein ring radius θE is:

u = θ −
1

θ
where u is source distance; θ is image distance

A(t) =
∑

∣

∣

∣

∣

θdθ

udu

∣

∣

∣

∣

=
u2(t) + 2

u(t)
√

u2(t) + 4
and

u2(t) = u20 +

(

t− t0
tE

)2

=⇒ the Paczyński light curve



A point lens microlensing event – Sumi et al.
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Another one (almost) – Beaulieu et al.
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A view of the 1.8m MOA telescope, Mt John, NZ
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Point source point mass lensing – N lenses
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■ In units of θE (or rE) for the total lensing mass the basic thin lens
equation relating the vector source position s to the vector positions x

of the multiple images is:

s = x−
N
∑

j=1

ǫj
x− rj

|x− rj |2

where rj and ǫj are the lens positions and mass fractions respectively.
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■ In units of θE (or rE) for the total lensing mass the basic thin lens
equation relating the vector source position s to the vector positions x

of the multiple images is:

s = x−
N
∑

j=1

ǫj
x− rj

|x− rj |2

where rj and ǫj are the lens positions and mass fractions respectively.

■ Transforming this 2D equation to the complex plane, s −→ ω and
x −→ z we can write this lensing equation in a simpler form

ω = z−
N
∑

j=1

ǫj
z− rj

|z− rj |2
=⇒ ω = z−

N
∑

j=1

ǫj
z̄− r̄j

and use the complex conjugate version of equation to eliminate z̄.



Mathematics and the physical world

9 / 29

■ Eugene Wigner (and maybe others) commented on the
“unreasonable effectiveness of mathematics in describing the

physical world”
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■ Eugene Wigner (and maybe others) commented on the
“unreasonable effectiveness of mathematics in describing the

physical world”

■ In my view, a similar comment can be made about
the surprising effectiveness of using complex variables to describe

microlensing involving more than one lens



The Lensing Polynomial for N Lenses
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■ We start with

z− ω −
N
∑

j=1

ǫj

(ω̄ − r̄j) +
∑N

k=1
ǫk/(z− rk)

= 0
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■ We start with

z− ω −
N
∑
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k=1
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= 0

■ Which can be reorganised as
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N
∑

j=1

ǫjHN

(ω̄ − r̄j)HN +GN

= 0 where HN (z) ∼ zN , GN (z) ∼ zN−1



The Lensing Polynomial for N Lenses

10 / 29

■ We start with

z− ω −
N
∑

j=1

ǫj

(ω̄ − r̄j) +
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N
∑

j=1

ǫjHN

(ω̄ − r̄j)HN +GN

= 0 where HN (z) ∼ zN , GN (z) ∼ zN−1

■ Which yields a polynomial in complex z of order M = N2 + 1
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M−1 + · · ·+ a1z+ a0 = 0



The Lensing Polynomial for N Lenses
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■ We start with

z− ω −
N
∑

j=1

ǫj

(ω̄ − r̄j) +
∑N

k=1
ǫk/(z− rk)

= 0

■ Which can be reorganised as

z−ω−

N
∑

j=1

ǫjHN

(ω̄ − r̄j)HN +GN

= 0 where HN (z) ∼ zN , GN (z) ∼ zN−1

■ Which yields a polynomial in complex z of order M = N2 + 1

aMz
M + aM−1z

M−1 + · · ·+ a1z+ a0 = 0

■ This polynomial has M complex roots (not all physical)



Lensing polynomial for 2 lenses
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■ We start with

z−ω−
ǫ1

(ω̄ − r̄1) +
ǫ1

z− r1

+
ǫ2

z− r2

−
ǫ2

+(ω̄ − r̄2) +
ǫ1

z− r1

+
ǫ2

z− r2

= 0

■ Which yields a complex polynomial of order 5

a5z
5 + a4z

4 + a5z
3 + a4z

2 + a1z+ a0 = 0

■ With 5 complex roots (and 3 or 5 physical roots)



Lensing polynomial for 3 lenses
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■ We start with

z− ω −
ǫ1

(ω̄ − r̄1) +
ǫ1

z− r1

+
ǫ2

z− r2

+
ǫ3

z− r3

−
ǫ2

(ω̄ − r̄2) +
ǫ1

z− r1

+
ǫ2

z− r2

+
ǫ3

z− r3

−
ǫ3

(ω̄ − r̄3) +
ǫ1

z− r1

+
ǫ2

z− r2

+
ǫ3

z− r3

= 0

■ Which yields a complex polynomial of order 10 with 10 complex roots
(and 4, 6, . . . physical roots)

a10z
10 + a9z

9 + · · ·+ a1z+ a0 = 0



Determining polynomial roots & real images
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■ Our strategy for finding polynomial roots depends on M = N2+1



Determining polynomial roots & real images

13 / 29

■ Our strategy for finding polynomial roots depends on M = N2+1

■ N=1, M=2 : analytical 2 roots, 2 images



Determining polynomial roots & real images

13 / 29

■ Our strategy for finding polynomial roots depends on M = N2+1

■ N=1, M=2 : analytical 2 roots, 2 images

■ N=2, M=5 : obtain roots numerically using root finder (eg Laguerre or
Jenkins-Traub methods). Find real image positions by checking if a root
recovers source position via lensing equation. No precision problems.
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■ Our strategy for finding polynomial roots depends on M = N2+1

■ N=1, M=2 : analytical 2 roots, 2 images

■ N=2, M=5 : obtain roots numerically using root finder (eg Laguerre or
Jenkins-Traub methods). Find real image positions by checking if a root
recovers source position via lensing equation. No precision problems.

■ N=3, M=10 : as for N=2, but occasional precision problems (not really
fixed by moving to quad precision).

■ N=4, M=17 : Definite precision problems and not fixed by moving to
quad precision). Solution as follows:



Polynomial root finding procedure
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■ Set origin of coordinates at the central stellar mass and employ
Jenkins-Traub algorithm to find roots for this polynomial.

(The J-T algorithm determines the roots in increasing order of absolute
value (so as to minimise numerical error arising from the polynomial
deflation that is used).

■ Move origin of coordinates to each of the planetary masses in turn and
recalculate polynomial coefficients. Use J-T algorithm to find all the
roots for each of these new polynomials.

■ Transform all polynomial roots to a common origin system and sort
values to obtain increasing absolute values.

■ From grouped “common” value roots, use the lensing equation to
determine which roots recover source position and therefore correspond
to physical image positions.



Lensing polynomial roots and real images
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number of number of number of
lenses roots images

1 2 2
2 5 3, 5
3 10 4, 6, . . .
4 17 5, 7, . . .
. . . . . . . . .
N N2+1 N+1, N+3,. . .



The Source and Image Complex Planes
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The algebra is greatly simplified by using complex variables to relate the
source position (ω = u+ iv) to the image positions (z = x+ iy) with
transformations z = g(ω) and ω = f(z).



Magnification: Infinitesimal Area Transformation
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δAuv = δPuδQv − δQuδPv =

(

∂u

∂x

∂v

∂y
−

∂v

∂x

∂u

∂y

)

δxδy =
∂(uv)

∂(xy)
δxδy



The complex variable Jacobian
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■ Change variables: (u, v) −→ (ω, ω̄) and (x, y) −→ (z, z̄)

■ Jacobian simplifies to

J =
∂(uv)

∂(xy)
=

∂ω

∂z

∂ω̄

∂z̄
−

∂ω

∂z̄

∂ω̄

∂z
= 1−

∣

∣

∣

∣

∂ω̄

∂z

∣

∣

∣

∣

2

= 1−

∣

∣

∣

∣

∂ω

∂z̄

∣

∣

∣

∣

2

■ Hence can evaluate J(z) from expression

J(z) = 1−

∣

∣

∣

∣

∣

∣

N
∑

j=1

ǫj
(z− rj)2

∣

∣

∣

∣

∣

∣

2

■ Total point source magnification is then sum over N physical images

Magn =
1

|J(z1)|
+

1

|J(z2)|
+

1

|J(z3)|
+ · · ·+

1

|J(zN)|



Finite Source Effects
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Finite source effects can be included via (a) Quadrapole approximation, (b)
Hexadecapole approximation, (c) Discrete equivalent of Green’s theorem, or
(d) inverse ray tracing in vicinity of image positions.



Determining crtical and caustic curves
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■ Require the crtical and caustic curves to characterise the topology of the
magnifcation map

■ Critical curve positions in image plane identified from J(z) = 0, yielding

N
∑

j=1

ǫj
(z− rj)2

= eiφ with 0 ≤ φ ≤ 2π

This yields a polynomial in z of order 2N with critical curve points
determined from polynomial roots. No precision problems as even for
N = 4 polynomial is only of order 8.

■ Use the lens equation to obtain the caustic curves corresponding to
positions in the source plane where the amplification is formally infinite.



Four lens planetary configuration
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A Three lens system ∼ ob06109
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q1 = 5.0× 104 r1 = 1.04 rE θ1 = 150◦

q2 = 1.4× 103 r2 = 0.63 rE θ2 = −20◦



A Three lens system ∼ ob06109
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A Four lens system ∼ ob06109+
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q1 = 5.1× 10−4 r1 = 1.04 rE θ1 = 150◦

q2 = 1.4× 10−3 r2 = 0.63 rE θ2 = −20◦

q3 = 5.1× 10−4 r2 = 0.80 rE θ2 = −110◦



A Four lens system ∼ ob06109+
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Star-planet systems: caustics ∼ add

26 / 29

■ For a four lens system the critical curve is determined from

ǫ1
(z− r1)2

+
ǫ2

(z− r2)2
+

ǫ3
(z− r3)2

+
ǫ4

(z− r4)2
= eiφ

■ For a star + three planet system we have ǫ1 ≫ ǫ2, ǫ3, ǫ4, so the
interaction between the star and planet i will be dominated by the
two-body pair with a critical curve (and caustic) determined from

ǫ1
(z− r1)2

+
ǫi

(z− ri)2
= eiφ



Binary lens components
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q1 = 5.0× 10−4 r1 = 1.04 rE θ1 = 150◦



Binary lens components
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q2 = 1.4× 10−3 r2 = 0.63 rE θ2 = −20◦



Binary lens components
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q3 = 5.1× 10−4 r3 = 0.80 rE θ3 = −110◦
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