Modelling Gravitational Events using Semi-analytical Techniques

Denis J Sullivan (and Paul Chote, Michael Miller) Victoria University of Wellington, NZ

February 17, 2012

Microlensing basics: the Einstein ring radius

Perfect alignment of a source and lensing mass yields the Einstein ring circular image (which sets the angular scale for microlensing events).

Microlensing towards the Galactic Bulge

- $\blacksquare R_S \sim 3 \times 10^3 \text{ for } M_L \sim M_{\odot}$
- $\blacksquare \ D \sim 8 \, {\rm kpc} \sim 2.6 \times 10^{20} \, {\rm m}$
- Hence: $\theta_E \sim 5 \times 10^{-9}$ rad ~ 1 milliarcsec (mas).
- One conclusion: for Galactic events milliarcseconds + not really a lens, phenomenon should be called millimiraging.

Three useful radii are the Einstein angle projected on to the three relevant planes:

(a) $r_E = \theta_E D_L$ (lens) (b) $\hat{r}_E = \theta_E D_S$ (source) (c) $\tilde{r}_E = \theta_E D$ (observer)

Point source point mass microlensing – single lens

The basic thin lens equation in units of the Einstein ring radius θ_E is:

 $u = \theta - \frac{1}{\theta}$ where **u** is source distance; θ is image distance $A(t) = \sum \left| \frac{\theta d\theta}{u du} \right| = \frac{u^2(t) + 2}{u(t)\sqrt{u^2(t) + 4}} \quad \text{and}$ $u^{2}(t) = u_{0}^{2} + \left(\frac{t-t_{0}}{t_{E}}\right)^{2} \implies \text{the Paczyński light curve}$ Theoretical microlensing light curves Magnification A(t) 4 2

> 0 $^{-2}$

-1

0 Time (units of Einstein radius crossing time)

4 / 29

2

A point lens microlensing event – Sumi et al.

Another one (almost) – Beaulieu et al.

A view of the 1.8 m MOA telescope, Mt John, NZ

Point source point mass lensing – N lenses

In units of θ_E (or r_E) for the total lensing mass the basic thin lens equation relating the vector source position s to the vector *positions* x of the multiple images is:

$$\mathbf{s} = \mathbf{x} - \sum_{j=1}^{N} \epsilon_j \frac{\mathbf{x} - \mathbf{r}_j}{|\mathbf{x} - \mathbf{r}_j|^2}$$

where \mathbf{r}_j and ϵ_j are the lens positions and mass fractions respectively.

Point source point mass lensing – N lenses

In units of θ_E (or r_E) for the total lensing mass the basic thin lens equation relating the vector source position s to the vector *positions* x of the multiple images is:

$$\mathbf{s} = \mathbf{x} - \sum_{j=1}^{N} \epsilon_j \frac{\mathbf{x} - \mathbf{r}_j}{|\mathbf{x} - \mathbf{r}_j|^2}$$

where \mathbf{r}_j and ϵ_j are the lens positions and mass fractions respectively.

Transforming this 2D equation to the complex plane, $\mathbf{s} \longrightarrow \omega$ and $\mathbf{x} \longrightarrow \mathbf{z}$ we can write this lensing equation in a simpler form

$$\omega = \mathbf{z} - \sum_{j=1}^{N} \epsilon_j \frac{\mathbf{z} - \mathbf{r}_j}{|\mathbf{z} - \mathbf{r}_j|^2} \implies \omega = \mathbf{z} - \sum_{j=1}^{N} \frac{\epsilon_j}{\overline{\mathbf{z}} - \overline{\mathbf{r}}_j}$$

and use the complex conjugate version of equation to eliminate \overline{z} .

Mathematics and the physical world

Eugene Wigner (and maybe others) commented on the "unreasonable effectiveness of mathematics in describing the physical world"

Mathematics and the physical world

- Eugene Wigner (and maybe others) commented on the "unreasonable effectiveness of mathematics in describing the physical world"
- In my view, a similar comment can be made about the surprising effectiveness of using complex variables to describe microlensing involving more than one lens

We start with

$$\mathbf{z} - \omega - \sum_{j=1}^{N} \frac{\epsilon_j}{(\bar{\omega} - \bar{\mathbf{r}}_j) + \sum_{k=1}^{N} \epsilon_k / (\mathbf{z} - \mathbf{r}_k)} = 0$$

We start with

$$\mathbf{z} - \omega - \sum_{j=1}^{N} \frac{\epsilon_j}{(\bar{\omega} - \bar{\mathbf{r}}_j) + \sum_{k=1}^{N} \epsilon_k / (\mathbf{z} - \mathbf{r}_k)} = 0$$

Which can be reorganised as

$$\mathbf{z} - \omega - \sum_{j=1}^{N} \frac{\epsilon_j H_N}{(\bar{\omega} - \bar{\mathbf{r}}_j) H_N + G_N} = 0 \quad \text{where} \quad H_N(z) \sim z^N, G_N(z) \sim z^{N-1}$$

We start with

$$\mathbf{z} - \omega - \sum_{j=1}^{N} \frac{\epsilon_j}{(\bar{\omega} - \bar{\mathbf{r}}_j) + \sum_{k=1}^{N} \epsilon_k / (\mathbf{z} - \mathbf{r}_k)} = 0$$

Which can be reorganised as

$$\mathbf{z} - \omega - \sum_{j=1}^{N} \frac{\epsilon_j H_N}{(\bar{\omega} - \bar{\mathbf{r}}_j) H_N + G_N} = 0 \quad \text{where} \quad H_N(z) \sim z^N, G_N(z) \sim z^{N-1}$$

• Which yields a polynomial in complex z of order $M = N^2 + 1$

$$a_M \mathbf{z}^M + a_{M-1} \mathbf{z}^{M-1} + \dots + a_1 \mathbf{z} + a_0 = 0$$

We start with

$$\mathbf{z} - \omega - \sum_{j=1}^{N} \frac{\epsilon_j}{(\bar{\omega} - \bar{\mathbf{r}}_j) + \sum_{k=1}^{N} \epsilon_k / (\mathbf{z} - \mathbf{r}_k)} = 0$$

Which can be reorganised as

$$\mathbf{z} - \omega - \sum_{j=1}^{N} \frac{\epsilon_j H_N}{(\bar{\omega} - \bar{\mathbf{r}}_j) H_N + G_N} = 0 \quad \text{where} \quad H_N(z) \sim z^N, G_N(z) \sim z^{N-1}$$

■ Which yields a polynomial in complex **z** of order $M = N^2 + 1$

$$a_M \mathbf{z}^M + a_{M-1} \mathbf{z}^{M-1} + \dots + a_1 \mathbf{z} + a_0 = 0$$

This polynomial has M complex roots (not all physical)

Lensing polynomial for 2 lenses

We start with

$$\mathbf{z} - \omega - \frac{\epsilon_1}{(\bar{\omega} - \bar{\mathbf{r}}_1) + \frac{\epsilon_1}{\mathbf{z} - \mathbf{r}_1} + \frac{\epsilon_2}{\mathbf{z} - \mathbf{r}_2}} - \frac{\epsilon_2}{\mathbf{z} - \mathbf{r}_2} = 0$$

Which yields a complex polynomial of order 5

$$a_5\mathbf{z}^5 + a_4\mathbf{z}^4 + a_5\mathbf{z}^3 + a_4\mathbf{z}^2 + a_1\mathbf{z} + a_0 = 0$$

■ With 5 complex roots (and 3 or 5 physical roots)

Lensing polynomial for 3 lenses

We start with

$$\mathbf{z} - \boldsymbol{\omega} - \frac{\epsilon_1}{(\bar{\boldsymbol{\omega}} - \bar{\mathbf{r}}_1) + \frac{\epsilon_1}{\mathbf{z} - \mathbf{r}_1} + \frac{\epsilon_2}{\mathbf{z} - \mathbf{r}_2} + \frac{\epsilon_3}{\mathbf{z} - \mathbf{r}_3}} - \frac{\epsilon_2}{(\bar{\boldsymbol{\omega}} - \bar{\mathbf{r}}_2) + \frac{\epsilon_1}{\mathbf{z} - \mathbf{r}_1} + \frac{\epsilon_2}{\mathbf{z} - \mathbf{r}_2} + \frac{\epsilon_3}{\mathbf{z} - \mathbf{r}_3}} - \frac{\epsilon_3}{(\bar{\boldsymbol{\omega}} - \bar{\mathbf{r}}_3) + \frac{\epsilon_1}{\mathbf{z} - \mathbf{r}_1} + \frac{\epsilon_2}{\mathbf{z} - \mathbf{r}_2} + \frac{\epsilon_3}{\mathbf{z} - \mathbf{r}_3}} = 0$$

Which yields a complex polynomial of order 10 with 10 complex roots (and 4, 6, ... physical roots)

$$a_{10}\mathbf{z}^{10} + a_9\mathbf{z}^9 + \dots + a_1\mathbf{z} + a_0 = 0$$

• Our strategy for finding polynomial roots depends on $M = N^2 + 1$

- Our strategy for finding polynomial roots depends on $M = N^2 + 1$
- N=1, M=2 : analytical 2 roots, 2 images

- Our strategy for finding polynomial roots depends on $M = N^2 + 1$
- N=1, M=2 : analytical 2 roots, 2 images
- N=2, M=5 : obtain roots numerically using root finder (eg Laguerre or Jenkins-Traub methods). Find real image positions by checking if a root recovers source position via lensing equation. No precision problems.

- Our strategy for finding polynomial roots depends on $M = N^2 + 1$
- N=1, M=2 : analytical 2 roots, 2 images
- N=2, M=5 : obtain roots numerically using root finder (eg Laguerre or Jenkins-Traub methods). Find real image positions by checking if a root recovers source position via lensing equation. No precision problems.
- N=3, M=10 : as for N=2, but occasional precision problems (not really fixed by moving to quad precision).

- Our strategy for finding polynomial roots depends on $M = N^2 + 1$
- N=1, M=2 : analytical 2 roots, 2 images
- N=2, M=5 : obtain roots numerically using root finder (eg Laguerre or Jenkins-Traub methods). Find real image positions by checking if a root recovers source position via lensing equation. No precision problems.
- N=3, M=10 : as for N=2, but occasional precision problems (not really fixed by moving to quad precision).
- N=4, M=17 : Definite precision problems and not fixed by moving to quad precision). Solution as follows:

Polynomial root finding procedure

Set origin of coordinates at the central stellar mass and employ Jenkins-Traub algorithm to find roots for this polynomial.

(The J-T algorithm determines the roots in increasing order of absolute value (so as to minimise numerical error arising from the polynomial deflation that is used).

- Move origin of coordinates to each of the planetary masses in turn and recalculate polynomial coefficients. Use J-T algorithm to find all the roots for each of these new polynomials.
- Transform all polynomial roots to a common origin system and sort values to obtain increasing absolute values.
- From grouped "common" value roots, use the lensing equation to determine which roots recover source position and therefore correspond to physical image positions.

Lensing polynomial roots and real images

number of	number of	number of
lenses	roots	images
1	2	2
2	5	3, 5
3	10	4, 6,
4	17	5, 7,
Ν	N^2+1	N+1, N+3,

The Source and Image Complex Planes

The algebra is greatly simplified by using complex variables to relate the source position ($\omega = u + iv$) to the image positions ($\mathbf{z} = x + iy$) with transformations $\mathbf{z} = g(\omega)$ and $\omega = f(\mathbf{z})$.

Magnification: Infinitesimal Area Transformation

$$\delta A_{uv} = \delta P_u \delta Q_v - \delta Q_u \delta P_v = \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial v}{\partial x} \frac{\partial u}{\partial y}\right) \delta x \delta y = \frac{\partial (uv)}{\partial (xy)} \delta x \delta y$$
source plane ($\omega = u + iv$) image plane ($z = x + iy$)
iv
$$\delta A_{uv}$$

$$\delta A_{uv$$

17 / 29

Х

The complex variable Jacobian

• Change variables: $(u, v) \longrightarrow (\omega, \overline{\omega})$ and $(x, y) \longrightarrow (\mathbf{z}, \overline{\mathbf{z}})$

Jacobian simplifies to

$$J = \frac{\partial(uv)}{\partial(xy)} = \frac{\partial\omega}{\partial\mathbf{z}}\frac{\partial\bar{\omega}}{\partial\bar{\mathbf{z}}} - \frac{\partial\omega}{\partial\bar{\mathbf{z}}}\frac{\partial\bar{\omega}}{\partial\mathbf{z}} = 1 - \left|\frac{\partial\bar{\omega}}{\partial\mathbf{z}}\right|^2 = 1 - \left|\frac{\partial\omega}{\partial\bar{\mathbf{z}}}\right|^2$$

Hence can evaluate $J(\mathbf{z})$ from expression

$$J(\mathbf{z}) = 1 - \left| \sum_{j=1}^{N} \frac{\epsilon_j}{(\mathbf{z} - \mathbf{r}_j)^2} \right|^2$$

Total point source magnification is then sum over N physical images

$$\mathsf{Magn} = \frac{1}{|J(\mathbf{z}_1)|} + \frac{1}{|J(\mathbf{z}_2)|} + \frac{1}{|J(\mathbf{z}_3)|} + \dots + \frac{1}{|J(\mathbf{z}_N)|}$$

Finite Source Effects

Finite source effects can be included via (a) Quadrapole approximation, (b) Hexadecapole approximation, (c) Discrete equivalent of Green's theorem, or (d) inverse ray tracing in vicinity of image positions.

Determining crtical and caustic curves

Require the crtical and caustic curves to characterise the topology of the magnification map

Critical curve positions in image plane identified from $J(\mathbf{z}) = 0$, yielding

$$\sum_{j=1}^{N} \frac{\epsilon_j}{(\mathbf{z} - \mathbf{r}_j)^2} = e^{i\phi} \quad \text{with} \quad 0 \le \phi \le 2\pi$$

This yields a polynomial in z of order 2N with critical curve points determined from polynomial roots. No precision problems as even for N = 4 polynomial is *only* of order 8.

Use the lens equation to obtain the caustic curves corresponding to positions in the source plane where the amplification is formally infinite.

Four lens planetary configuration

4 Lens Planetary Configuration

A Three lens system \sim ob06109

A Three lens system \sim ob06109

A Four lens system \sim ob06109+

A Four lens system \sim ob06109+

Star-planet systems: caustics \sim add

■ For a four lens system the critical curve is determined from

$$\frac{\epsilon_1}{(\mathbf{z}-\mathbf{r}_1)^2} + \frac{\epsilon_2}{(\mathbf{z}-\mathbf{r}_2)^2} + \frac{\epsilon_3}{(\mathbf{z}-\mathbf{r}_3)^2} + \frac{\epsilon_4}{(\mathbf{z}-\mathbf{r}_4)^2} = e^{i\phi}$$

For a star + three planet system we have $\epsilon_1 \gg \epsilon_2, \epsilon_3, \epsilon_4$, so the interaction between the star and planet *i* will be dominated by the two-body pair with a critical curve (and caustic) determined from

$$\frac{\epsilon_1}{(\mathbf{z} - \mathbf{r}_1)^2} + \frac{\epsilon_i}{(\mathbf{z} - \mathbf{r}_i)^2} = e^{i\phi}$$

Binary lens components

$$q_1 = 5.0 \times 10^{-4} | r_1 = 1.04 r_E | \theta_1 = 150^{\circ}$$

Binary lens components

$$q_2 = 1.4 \times 10^{-3} | r_2 = 0.63 r_E | \theta_2 = -20^{\circ}$$

Binary lens components

$$q_3 = 5.1 \times 10^{-4} | r_3 = 0.80 r_E | \theta_3 = -110^{\circ}$$

