The 16th International Conference on Gravitational Microlensing

Detection Efficiencies of Low-magnification Events in MOA-II Data

Daisuke Suzuki Osaka University

Feb. 17, 2012 @Pasadena, CA

Statistical analysis

•Sumi et al. 2010 •10 planets, ∝q^{-0.68}

•Gould et al. 2010 •6 planets in 13 high-mag eve •0.36 @ q ~ 5×10⁻⁴

Cassan et al. 2012
2002 – 2007 data
3 additional planets combined with the above.

GOAL : derive planet abundance including low-mag planetary event found by MOA-II

High-mag VS Low-mag

High-magnification

Low-magnification

Observation frequency was CHANGED due to the anomaly

CONSTANT observation

frequency

Resid (single)

Resid (planet)

Janczak et al. 2010

Artificial lightcurve of Low-mag event (MB09266)

Observation frequency should change if different anomalies occurred.

Method of calculating D.E in Low-mag events

- 1. Generate artificial lightcurve (s, q, α) Gaudi & Sackett 2002
 - Simulate survey observations by MOA-II

Detect an anomaly in real-time

$$S_{3} = \left| \sum_{i=n-2}^{n} \frac{F_{i} - F_{data,i}}{\sigma} \right| > S_{3_thr}$$
$$S_{3_thr} = 9$$

Simulate follow-up observations if anomalous

2. Detect a planet

$$\Delta \chi^{2} = \chi^{2}_{Single} - \chi^{2}_{Binary}$$
$$\Delta \chi^{2} \ge \chi^{2}_{thr} = 500$$

Gould et al. 2010

3. Repeat 1, 2 for the $\alpha(0 < \alpha < 2\pi)$, then

$$\varepsilon(q,d) = \frac{N_{DETECTION}}{N_{ALL}}$$

Detection efficiencies to PLANETS

REAL anomaly detection

OB20110265 : easy

MB2009266 : hard

Criteria to detect anomalies in real-time

autocorrelation of the latest 3 data points

 a_3

autocorrelation of the whole data points

Criteria to detect anomalies in real-time

This criteria will be used in real observation in 2012 season.

Event selection

•Full sample : 2007-2011 MOA-II data, 2620 events

•Sub-sample must Include the planetary events.

•OB07368(MB07308), MB09266, MB09387, MB10117, MB10328, MB11028, OB110265(MB11197),
•MB09319
•MB11262

•The selection must not depend on planet itself.

•High S/N deviation from the baseline during the event.

•74 single lens events + 5 planetary events (MB09266, MB10117, MB10328, MB11028, OB110265)

preliminary

Finite source effect

Need to estimate the source star radius.
No color information during the event.

•Use source magnitude and CMD from HST Holtzman et al. 1998

μ = <12.5> km s⁻¹ kpc⁻¹ ∼3 mas yr⁻¹

> Gaudi et al. 2002, Kervella et al. 2008, Bennett et al. 2008

Summary & Future work

Set the criteria to detect an anomaly in real-time.
Combination of several criteria
Able to detect the planetary anomalies in 07' – 11' MOA-II data

Calculated the detection efficiencies to ANOMALY within the limited region using preliminary sub-sample.
The slope is consistent with the previous work.

With whole sample,
Calculate the other (s, q) region.
Simulate follow-up observations.
Estimate the planet abundance.
of planets included statistics will be double.

Thank you

2010: 23 events

2011: 10 events

Artificial lightcurve of Low-mag event (MB09266)

惑星のパラメータが違えば、観測頻度も違うはず。

Artificial lightcurve of Low-mag event (MB09266)

こういう観測頻度になるはず。

High-mag VS Low-mag

High-magnification

Low-magnification

CONSTANT observation frequency

Resid (single)

Resid (planet)

Janczak et al. 2010

Observation frequency was increased due to the anomaly