Exoplanet Demographics with a Space-based Microlensing Survey

Science with a Wide-field Infrared Telescope in Space February 15, 2012

Scott Gaudi
The Ohio State University

Backstory. Before 1995....

Planet Formation.

Must understand the physical processes by which micronsized grains in protoplanetary disks grow by 10⁻¹³⁻¹⁴ in size and 10⁻³⁸⁻⁴¹ in mass.

Hard!

A Fairy Tale.

Bottom-Up Planet Formation.

(e.g., Lissauer 1987; Ida & Lin 2004, 2005)

The Snow Line.

Core Accretion.

(Pollack et al. 1996)

Terrestrial Planet Formation.

(Kokubo & Ida 2002, Raymond et al. 2006)

Matched Data Well.

1995: A Planetary Companion to 51 Peg

(Mayor & Queloz 1995)

Planet formation is *really* hard!

Additional physics, e.g.,

- Migration
- Influence of host star mass, metallicity
- Dynamical interactions
- Tides
- Disk properties
- Other models! (e.g., disk instability)
- Etc.

Meanwhile...

Semi-analytic planet formation.

(Mordasani et al. 2009)

Testing and Refining Theories.

- Physical processes at work during planet formation and evolution are imprinted in planet distributions.
- Examples:
 - Planet "desert"
 - Paucity of giant planets around low-mass stars
 - Free-floating planets
- The plan: measure these distribution functions as accurately as possible over as broad a range of planet and host properties as possible. (In other words, determine the demographics of exoplanets.)

2012, Mayor et al. 2012) Howard et al.

Results from various methods.

- Radial velocity surveys, transits (Kepler), direct imaging, microlensing.
- Low-mass planets are much more common than high-mass planets
- Giant planet abundance scales with host star mass and metallicity.
- Almost all results are for planets interior to the snow line, or relatively massive planets.

Understanding Habitability.

Water, water, everywhere.

- For in situ formation, material that accreted to form rocky planets in the habitable zone was likely dry.
- Water was likely delivered from the outer solar system.

Outer and Inner Regions Coupled.

- Giant planets likely formed first.
- Presence (or not) and properties of outer gas giants can effect
 - Terrestrial planet formation
 - Water delivery
- Migration of gas giants through terrestrial can result in small planets in the habitable zone.

Are small planets in the habitable zone, um, habitable?!?

- Migration can bring volatile-rich planets into habitable zone (Kuchner 2003).
- Water worlds, or rocky/icy bodies with very thick atmospheres.
- May or may not be habitable.
- Must disentangle the "natives" from the "immigrants".
- Radii may not be sufficient.

(Fressin et al. 2012)

To the snow line... and beyond!

Microlensing.

Microlensing Basics.

Rings and Images.

$$\theta_{\rm E} = \sqrt{\frac{4GM}{c^2} \frac{D_{LS}}{D_{OL} D_{OS}}} \sim 700 \mu \text{as} \left(\frac{M}{0.5 M_{\odot}}\right)^{1/2}$$

Microlensing Events.

$$t_E = \frac{\theta_E}{\mu} \approx 25 \text{ days} \left(\frac{M}{0.5 M_{\odot}}\right)^{1/2}$$

 $\mu \sim 1-15$ mas/year, $\theta_E \sim 0.1-2$ mas

- Timescales of a few to hundreds of days.
- Stochastic
- Degenerate
 combination of the
 mass, distance to lens
 and source, and
 relative lens-source
 proper motion.

Detecting Planets.

$$t_p = q^{1/2} t_E \approx 1 \text{ day } \left(\frac{M_p}{M_J}\right)^{1/2}$$

High-Magnification

High Efficiency

Maximized when

$$a \sim r_E = \theta_E D_l \sim 2.8 \text{AU} \left(\frac{M}{0.5 M_{\odot}} \right)^{1/2}$$

Microlensing is directly sensitive to planet mass.

- Works by perturbing images
- Does not require light from the lens or planet.
- Sensitive to planets throughout the Galaxy (distances of 1-8 kpc)
- Sensitive to wide or free-floating planets
- Not sensitive to very close planets

Mass ratio dependence.

- Magnitude depends on separation of planet from image.
- Duration depends on mass ratio.

$$t_p = q^{1/2} t_E \approx 2 \text{ hrs} \left(\frac{q}{10^{-5}}\right)^{1/2}$$

 Detection probability depends on mass ratio.

$$P \sim A_0 \theta_p \sim \text{few } \% \left(\frac{q}{10^{-5}} \right)^{-0.5}$$

Signal magnitude is *independent* of planet mass ratio, but signals get *rarer* and *briefer*.

Lower Mass Limit.

$$\theta_E \approx \mu \text{as} \left(\frac{M_p}{M_{\oplus}}\right)^{1/2}$$
 $\theta_* \approx \mu \text{as} \left(\frac{R_*}{R_{\odot}}\right)$

$$\rho_* = \frac{\theta_*}{\theta_E} \approx 1$$

- Detecting low-mass planets requires monitoring main-sequence sources.
- Mars-mass planets detectable!

(Bennett & Rhie 1996)

Microlensing Host Stars?

Sensitive to planets around:

- Main-sequence stars with M< M_{Sun}
- Brown dwarfs
- Remnants

Faint Lenses:

- Most lenses are fainter than (and blended with) the sources.
- Lenses distributed along the line of sight (distances of 1-8 kpc)

What do we measure?

- For nearly all events*:
 - mass ratio
 - projected separation in Einstein ring radius.
 - *Need to measure primary event properties.
- For most low-mass planet detections (and a large subset of higher-mass detections)
 - Einstein ring radius through finite source effects.
 - Gives a relationship between mass and distance of lens.
- Finally measure mass through a number of ways:
 - Isolate flux from the lens
 - Measure microlens parallax
 - Both give different relationship between mass and distance

(Bond et al. 2004)

Results!

A Multiple-Planet System.

- Single planet models fail.
- Two planets models work well.
- First multipleplanet system detected by microlensing.

(Gaudi et al 2008; Bennett et al 2010)

Physical Properties.

Host:

Mass = $0.51 + - 0.05 M_{Sun}$

Luminosity $\sim 5\%$ L_{Sun}

Distance = 1510 + /- 120 pc

Planet b:

Mass = $0.73 + - 0.06 M_{Jup}$

Semimajor Axis = 2.3 + /- 0.5 AU

Planet c:

Mass = 0.27 +/- 0.02 M_{Jup} = 0.90 M_{Sat}

Semimajor Axis = 4.6 + /- 1.5 AU

Eccentricity = 0.15+0.17-0.10

Inclination = 64+4-7 degrees

AO Imaging from Keck

~10 M_{Earth} Planet.

(MOA, µFUN, PLANET, RoboNET, Muraki et al. 2011)

Failed Jupiter Core?

Planet mass = $10.4 \pm 1.7 M_{Earth}$

(Pollack et al. 1996)

(Borucki et al. 2011)

A Massive M Dwarf Planet.

$$M = 0.46 \pm 0.04 M_{\odot}$$

$$D_l = 3.2 \pm 0.4 \text{ kpc}$$

$$v_{\rm LSR} = 103 \pm 15 \, \rm km \, s^{-1}$$

(Dong et al. 2008)

$$m = 3.8 \pm 0.4 M_{\text{Jup}}$$

$$r_{\perp} = 3.6 \pm 0.2 \text{ AU}$$

$$T_{eq} \sim 50K$$

Demographics Beyond the Snow Line:

An Inconvenient Truth.

(Gould et al. 2010, Sumi et al. 2009, Cassan et al. 2012)

Free Floating Planets.

- Excess of short time scale events relative to expected stellar/ brown dwarf contribution.
- Unbound or wideseparation planets.
- Implies roughly 2
 Jupiter-mass free-floating planets per star.

Next Generation Surveys.

Microlensing Event Rates.

- Require a close alignment of ~1 mas.
- The event rate depends on the density distribution of masses along the line of sight.
- Event rate highest for stars in Galactic bulge.

• Total number $\Gamma \approx 10^{-5} \, \text{yr}^{-1}$ and son the luminosity function of bulge sources.

Bulge Luminosity Function.

- Fainter more sources
- Fainter =>smaller sources
- Fainter ← FOV
- Longer wavelength
 smaller sources,
 more extincted
 regions, higher event
 rates, but also more
 crowded

(mean separation ~ 0.5 " for I < 25)

Requirements.

- Event Rate
 - Primary Event Rate

$$\Gamma \approx 10^{-5} \, \mathrm{yr}^{-1}$$

Detection Probability

$$P \approx A_0 \theta_p \approx 1\% \left(\frac{M_p}{M_{Earth}}\right)^{1/2}$$

Detections Per Year

$$N \approx n_F \Omega \Phi \Gamma P \approx 10 \text{ yr}^{-1} \left(\frac{\Omega}{10\Box^{\circ}}\right) \left(\frac{\Phi}{10^7/\Box^{\circ}}\right) \left(\frac{\Gamma}{10^{-5} \text{ yr}^{-1}}\right) \left(\frac{P}{1\%}\right)$$

Requirements Part 2.

Detecting the Perturbations from Earth-mass Planets

Sampling rate ~ 10 minutes

$$t_{E,p} = 2 \operatorname{hrs} \left(\frac{M_p}{M_E} \right)^{1/2}$$

- Photometric Accuracy ~ 1% at I~21
 - Signal Magnitude

$$\frac{\Delta F}{F} \approx 1\% \left(\frac{M_p}{M_{o}}\right) \left(\frac{R_*}{R_{\odot}}\right)^{-2}$$

Photometric Uncertainty

$$\sigma = 1\% \left(\frac{D}{2m}\right)^{-1} \left(\frac{t_{\text{exp}}}{120\text{s}}\right)^{-1/2} 10^{0.2(I-21)}$$

What sets the lower mass limit?

- The finite size of the sources sets the ultimate lower mass limit for detection.
- The source crossing time sets the minimum required cadence of ~10 minutes.
- Small sources allow the detection of smaller planets
 - Late type stars fainter, IR.
- Source size more important for closer planets.

Ground vs. Space.

Infrared.

- More extincted fields -> higher event rates.
- Smaller sources -> smaller planets, close-in planets.

Resolution

- Low-magnification events with main-sequence sources -> higher event rates, smaller planets.
- Isolate light from the lens star ->
 Host mass characterization for the majority of events.

Coverage

 Complete coverage -> Better characterization

The field of microlensing event MACHO 96-BLG-5 (Bennett & Rhie 2002) Smaller systematics

 Better characterization of parameters, more robust quantification of efficiencies.

Science enabled from space: sub-Earth mass planets, habitable planets, free-floating Earth-mass planets, mass measurements.

Lens Detection Provides Accurate Mass Estimate.

(Bennett et al. 2007)

- Lens will be detected for the majority of main-sequence lenses.
- Host star masses will be measured to 10% for half of the events.
- Projected separations will be measured to 5% for half of the events.

Habitable Planets?

 Habitable zone is well interior to the Einstein ring radius for most lenses.

$$\frac{R_{HZ}}{R_E} \sim 0.3 \left(\frac{M}{M_{\odot}}\right)^{3/2} \left[x(1-x)\right]^{1/2}$$

- Minor image perturbations.
- More sensitive to source size.
- Require better precision.
- Can be made up by more time through the "x" factor.

$$R_E = \theta_E D_l \sim 3.5 \,\text{AU} \left(\frac{M}{M_\odot}\right)^{1/2} [x(1-x)]^{1/2}, \ x \equiv \frac{D_{ol}}{D_{os}}$$

(Park et al. 2006)

Detailed Simulations.

(Bennett & Rhie 2002)

Space Discovery Potential.

- With Kepler, "completes the census" of planets.
- Sensitivity to all Solar Systemanalogs except Mercury
- Good sensitivity to "outer" habitable zone (Mars-like orbits).
- Free-floating planets down to ~Mars mass.
- WFIRST IDRM estimated yields:
 - Roughly 3300 bound planets (0.1-40 AU)
 - 320 < Earth, 1500 < 10xEarth
 - Roughly 2000 free-floating planets
 - Solar system analogs:
 - 280 terrestrial
 - 3200 gas giants
 - 84 ice giants.
- Euclid has similar potential.

(Green et al, WFIRST Interim Report)

Euclid.

(Penny et al, 2012)

Summary.

- Planet formation is hard.
- The demographics of planets beyond the snow line provides crucial constraints on planet formation theories.
- Understanding habitability likely requires a broad picture of exoplanet demographics.
- Microlensing surveys have already provided intriguing information about planets beyond the snow line.
- Space-based surveys enable qualitatively new, exciting science: sub-Earth-mass planets, free-floating planets, outer habitable zone planets, mass measurements.