

The WFIRST Interim Design Reference Mission

Capabilities, Constraints, and Open
Questions

Jeffrey Kruk

Disclaimer

- The capabilities and constraints described herein are for the Interim Design Reference Mission
 - Which evolved from the JDEM Omega RFI design
 - Which evolved from the SNAP/DESTINY/ADEPT mission concept studies and consultation with the Science Coordination Group
- The mission will continue to evolve in response to pressures of natural selection

Mission Description

- L2 Halo orbit
 - ~8 10⁵km radius
 - 25°-35° Earth-Sun angle

- 5 year mission life
 - 10 year consumables
- DSN for communications
- Data Center at IPAC

Sample Survey Program

- Wide Survey: 11,000 deg² per year
 - Optimized for galaxy redshift survey
- Deep Survey: 2,700 deg² per year
 - Optimized for weak lensing
- Deeper synoptic survey(s): 1.44 deg², 5.76 deg²
 - 5-day revisit cadence for SNIa (z<1.2, z<0.8)
 - Ranga Ram Chary talk yesterday: 1-10 PISN/deg²/yr
- Galactic bulge: 7 fields, 2.04 deg²
 - 15 minute revisit cadence, nonstop over 72 days, for planetary microlensing
- Galactic plane survey
- Guest Observer program

Some Fine Print

Deep Survey

- 5 steps equal to detector gap size, 160 sec per exposure
- Uniform ImC depth: 5 exposures at all points
- Repeat for second filter, at 5° roll offset
- Third filter at shallower depth

Wide Survey

- 2 steps to fill gaps, 150 sec per exposure
- Repeat for second filter, at 5° roll offset
- Stacking all data from both SpCs gives 6 out of 8 exposures at most points in survey
- 30 deg² per day
- No synoptic repeat visits planned for these surveys

Observatory

Payload

- Telescope: 1.3m un-obscured TMA
- Three instrument channels
 - Imager:
 - 7x4 H2RG HgCdTe, 0.18" arcsec/pixel
 - 5 filters plus R~75 prism for slitless spectroscopy
 - 0.76μm 2.0μm
 - 2 Counter-dispersed slitless spectrometers:
 - 2x2 H2RG HgCdTe, 0.45"/pixel
 - R~230 (pt src, 2 pix resel), or 1250-1500 km/s/arcsec
 - 1.1μm 2.0μm

Payload field of view

Optical layout

IDRM Effective Area

Plot shows Effective area for each filter and each SpC.

SN prism throughput is ~5% lower than the filters.

BAO prism thruput is higher in single-channel design.

Det QE used here may be optimistic below ~1.3µm

System PSF

ImC Net PSF:

(includes jitter, charge diffusion, pixelization, etc)

Filter	R(EE50) arcsec
F087	0.13
F111	0.14
F141	0.15
F178	0.18

SpC is under-sampled, but pixel scale is adequate for a galaxy redshift survey.

Design residual wavefront error:

- ImC: 13-18nm rms (map above)
 - Observatory budget: 83 nm
- SpC: 35-73nm RMS
 - Observatory budget: 213 nm

SNe Inertially Fixed Fields must be within 20° of one of the Ecliptic Poles, and can be rotated every ~45 days

Can observe Inertially
Fixed Fields in the
Galactic Bulge (GB) for
72 days twice a year

Scientific Pointing Constraints (scheduling)

- Microlensing campaigns can't be interrupted
 - 72-day campaigns twice a year; 7 campaigns total
- SNIa campaign can run at low duty-cycle (say one day out of five), but last two years.
- We could almost, but not quite, get both of these to fit in a five year plan.
- SNIa requires constant roll for 45 day intervals
 - interleaving with WL may be problematic due to abrupt changes in thermal environment
- Galactic plane survey conflicts w/microlensing

Galactic Plane Visibility

Pointing Performance

- Pointing jitter: < 40 mas rms, per axis
- Revisit accuracy: ~18 mas
 - Limited by settle time
- Short slews (survey steps): <60s, 30s goal
- Long slews: 180° in < 10 minutes
- The antenna is on a gimbal, so no observing time is lost to downlink
- Unload momentum by hydrazine thrusters

Dynamic Range

- Detectors will be read non-destructively, with frame-time of 1.3 seconds.
 - If 3 samples desired prior to saturation, can observe AB ~13 stars (AB~14 in W149)
 - Cosmic-ray rejection on-the-fly
 - List of CR corrections will be downlinked

Limiting sensitivity

WFIRST				
Imaging: 5σ point-source limiting magnitude (AB)				
WIDE	DEEP	SNIa-1	SNIa-2	
24.8	25.75	28.0	28.75	
Spectroscopy: 7σ limiting line flux (10 ⁻¹⁶ ergs ⁻¹ cm ⁻² s ⁻¹)				
WIDE	DEEP	SNIa-1	SNIa-2	
2.3	1.7	0.2	<0.1	

Galactic Bulge nominal 5σ limiting magnitude = 30.2, but real limit is crowding Spectroscopic limit is for galaxies with R(EE50)=0.2"

Euclid limiting sensitivity (from Red Book):

Imaging 5σ point source in YJH: 24 (AB)

Spectroscopy 3.5σ point source: 3.0 10⁻¹⁶ ergs⁻¹ cm⁻² s⁻¹

Open Questions

- Bandpass: looking at extending to ~2.4μm
- Single channel optical design
 - Add prism wheel, move SpC detectors to ImC
 - Imaging faster, redshift survey slower; total time similar
 - Faster imaging relieves scheduling conflicts
 - More flexible for tailoring observing program
- 4kx4k detectors with 10μm pixels
 - Relieves conflict between fine sampling and large FoV
 - Readout slower -> fewer samples -> higher readnoise and fainter bright limit.
- IFU for SNIa spectroscopy
 - Cost benefit trades are complex

Single Channel Design

The Field of view of the single imaging & spectroscopy channel is shown to scale with the Moon, HST, and JWST. Each square is a 4Mpix vis-NIR sensor chip assembly (SCA)

ImC: 9x4 @ 0.18"/p;

STIS COS

VICON

NICHOS

ACS

1-4)

1.084°

HST [all instruments]

Each square shown is physically a 2040 x 2040 x 18um HgCdTe array [H2RG-18]

Moon (average size seen from Earth)

