Microlensing observations using the Rosetta spacecraft

Colin Snodgrass

Björn Grieger, Michael Kueppers, Elena Manjavacas, Martin Burgdorf, Martin Dominik, Holger Sierks, Horst Uwe Keller

Microlensing from space

Advantages

- Out of atmosphere, no weather or seeing problems
- o No diurnal cycle
- Large parallax signal relative to Earth

Disadvantages

- High cost
- Low bandwidth

Microlensing from space

Advantages

- Out of atmosphere, no weather or seeing problems
- No diurnal cycle
- Large parallax signal relative to Earth
- Added value for mission

Disadvantages

- o High cost
- Low bandwidth
- Camera not designed for microlensing
- Availability depends on prime mission

"Borrowed" spacecraft

Rosetta

- ESA Cornerstone mission.
- ~1 Billion Euro cost.
- Rendezvous with comet 67P/Churyumov-Gerasimenko.
- Most complicated comet mission ever flown.
- Will escort comet as it approaches the Sun, watch activity develop.
- 11 instruments, plus 10 on separate lander.

Mission timeline

- 12 year mission
- 2 year comet phase
- Long hibernation
- Instruments generally off during cruise
- Fly-by targets
- Bonus cruise phase science

Event	Nominal date
Launch	2 March 2004
1st Earth gravity assist	4 March 2005
Mars gravity assist	25 February 2007
2 nd Earth gravity assist	13 November 2007
Asteroid Steins flyby	5 September 2008
3 rd Earth gravity assist	13 November 2009
Asteroid Lutetia flyby	10 July 2010
Enter deep space hibernation	July 2011
Exit deep space hibernation	January 2014
Rendezvous manoeuvre	May 2014
Lander Delivery	November 2014
Perihelion Passage	August 2015
End of Mission	December 2015

OSIRIS

- OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras on Rosetta.
- Narrow and Wide angle cameras (NAC & WAC).
- Designed to return high resolution images from close range.
- Not a space telescope.
- 12cm aperture, pixel scale
 3.8 arcsec/pixel (NAC).
- FOV ~2 degrees (NAC).

Rosetta microlensing

- End of 2008 bulge season.
- Immediately after Steins flyby (Sept/Oct 2008).
- At this point, Rosetta 2.4
 2.8 AU from Earth.
- 7 visits to each of 8 fields.
- 300s exposure.
- "Orange" filter.

Images

Images

Detectable events

- 30 100 events per field.
- Most back at baseline by this point.
- Others too faint.

OB08344, I0 ~ 15

OB08517, I0 ~ 15

OB08525, I0 ~ 15

OB08640, I0 ~ 17 -

- 100 x 100 pixels subframe.
- ~6x6 arcmin
- Identification of source challenging.
- Sufficient bright isolated stars for comparison photometry

- 100 x 100 pixels subframe.
- ~6x6 arcmin
- Identification of source challenging.
- Sufficient bright isolated stars for comparison photometry
- 59 OGLE stars brighter than V=16 in BLG242.5

- Fixing t_E from ground based (22.9 days), and fitting for t0 and u0 with OSIRIS.
- Difference in t0 ~ 9 days.

```
Event
                                OB-08-601
Fitted base brightness
                                0.0390827979
Fitted background brightness =
                                1.12128841
Fixed t_E [d]
                                22.8700008
Ground based t_0 [JD]
                                4752.50635
Fitted t_0 [JD]
                                4743.63158
Ground based u_0
                                0.131999999
                                0.101989537
Fitted u_0
Tagential distance [R_E]
                                0.388052618
Radial distance [R E] (1)
                                0.0300104618
Radial distance [R_E] (2)
                                0.233989537
Distance [R_E] (1)
                                0.389211333
Distance [R_E] (2)
                                0.453140086
Distance [AU]
                                1.60000002
R_Einstein [AU] (1)
                                4.11087727
R_Einstein [AU] (2)
                                3.53091698
```

Event = OB-08-582Fixed f E [d] = 34.7890015 Ground based t_0 [JD] = 4740.60791 Fitted t = 0 [JD] = 4739.65212 Ground based u = 0.612999976Fitted u = 0.423104525Tagential distance [R E] = 0.0274739346Radial distance [R E] (1) = 0.189895451Radial distance $[R_E]$ (2) = 1.0361045 Distance $[R_E](1) = 0.191872612$ Distance $[R_E]$ (2) = 1.03646869 Distance [AU] = 1.60000002 $R_{\text{Einstein}} [AU] (1) = 8.33886611$ R Einstein [AU] (2) = 1.54370319

Blending

- Large pixels give strong blending.
- Only 7 points per curve, baseline not well measured.
- Observations the following year with ground based telescopes.
- Link with OGLE photometry calibrates this.
- Large aperture matches OSIRIS aperture.
- Create synthetic baseline magnitude for OSIRIS.

Summary

- Rosetta/OSIRIS took images covering 2x16 degrees of the galactic bulge in September/October 2008.
- Seven epochs per object.
- Limiting magnitude I~17.
- Large pixel scale makes photometry challenging.
- Large distance from the Earth (> 2 AU, ~1.6 AU projected) gives strong parallax potential.
- Ground based imaging at baseline to constrain blending, relative to typical ground based observations.
- Use of OGLE-III photometric catalogue to provide flux calibration between different instruments.