Simulation of a Planetary Microlensing Survey by Euclid

Matthew Penny (JBCA now OSU) And Eamonn Kerins, Nick Rattenbury (JBCA) Annie Robin (Observatoire de Besançon) J-P Beaulieu (IAP Paris) The Euclid Consortium

16th International Conference on Gravitational Microlensing 17th Feb 2012

Overview

- 1. The Euclid Spacecraft
- 2. The Science
- 3. The Simulations
- 4. The Expected Yields

1. Euclid

For more info see: The Euclid Red Book Laureijs+ 2011 arXiv:1110.3193

- An ESA mission to probe dark energy via Weak Lensing (WL) and Baryon Acoustic Oscillations (BAO)
- Wide-field 1.2-m telescope @ L2
- 0.5 deg² NIR and Visual imagers

1. Euclid Instruments

VIS

Galaxy shapes etc.

- 36 4k x 4k CCDs
- 0.1" pixels
- 0.2" PSF
- Single broad RIZ filter
- Limiting mag 24.5 in 3x~540s

NISP

Photo-z + Spectro-z

- 16 2k x 2k HgCdTe arrays
- 0.3" pixels
- 0.3-0.45" PSF
- Y, J, H NIR filters + 2 Grisms
- 24th mag in each

1. Euclid Main Survey

Scans sky maintaining fixed orientation cf Sun

But can't survey galaxies in Galactic plane

Two surveys in 6 yrs

- Wide survey 15,000-20,000deg²
- Deep survey 40deg²

1. μ L with Euclid

Euclid is perfectly suited to microlensing observations:

- High resolution
- Wide field
- Sensitive VIS + NIR photometry

+ has "low-efficiency" time which can be used for other projects

2. The Science

Do microlensing with Euclid to probe:

- Planet formation
 - Core accretion or disc instability?
 - Mechanisms, timescales, etc.?
 - How many planets form and what happens to them?
- Habitable systems
 - How many systems look like home?
 - Jupiter, Saturn + warm terrestrial planets?

Core Accretion

Planets build up slowly from grains to gas giants in dusty disc

Disc Instability

Gas giants quickly collapse out of a gaseous disc

2. And there's migration!

• Planets migrate within the disc

2. The M-a diagram

3. The Simulator - MaBµLS

Manchester-Besancon microLensing Simulator

- Draws events from the Besancon Galactic model
- Simulates photometry with realistic image simulations
- Modular, extensible design

3. The Besancon Model

Robin+ 1986, 2003, 2012 etc. Marshall et al 2006

Galactic population synthesis model:

Incorporates:

- Bulge+bar, thin+thick discs, stellar halo
- Evolutionary tracks
- Stellar atmos models
- 3d dust model

Generates lists of stars and their properties

Detector and Noise parameters

#Instrument: NISP #Band: H

#Microlensing detector - 17/09/2011 FINAL PARAMETERS

BIAS	380	Bias level in counts per pixel
READOUT	9.1	Read out noise in counts per pixel
THERMAL	0.26	Thermal flux in counts per pixel per sec
DARKCURRENT	0.1	Dark current in counts per pixel per sec
PIXELSCALE PSFFWHM PSFFILE /hpix.psf	0.3 0.45 /home/mpenny/gp2	Pixel size in arcsec PSF FWHM in arcsec 2/testing/Exigere/image/ConfigFiles/Observatories
#PSFFILE	/home/mpenny/gj	p2/Exigere/PSFs/hpix.txt
PSFSCALE	0.0166666667	Spacing between samples of the numerical PSF
KERNSIZE	55	PSF Kernel size
SUBPIX	9	Number of sub pixel points used to place stars
BITDEPTH	16	Number of bits per pixel
SYSTEMATIC	0.003	Systematic photometry error
DIAMETER	1.2	Telescope diameter in metres
BLOCKAGE	0.4	Telescope blockage in metres
ZEROMAG	24.9213	Magnitude at which zeropoint is defined
ZEROFLUX	1	Photons per second from areference source
BACKGROUND	21.4	Background magnitude in mags per sq arcsec
APERTURE	0.5	Aperture radius (not diameter) in arcsec
PIXELSIZE	18	Pixel size in microns
CRFLUX	0	Cosmic ray flux in hits m^-2 s^-1

Numerical PSFs

Images generated from star lists output by Besancon model

Simulate a CCD

• Bias

- Bias
- Background

- Bias
- Background
- Faint stars

- Bias
- Background
- Faint stars
- Stars

- Bias
- Background
- Faint stars
- Stars
- Bright stars

- Bias
- Background
- Faint stars
- Stars
- Bright stars
- A Source

- Bias
- Background
- Faint stars
- Stars
- Bright stars
- A Source
- Lensing

Simulated image

Euclid NISP detector

Image Simulations

NISP H

NISP J

NISP Y

VIS RIZ

3. Other Features

#Observing sequence for the H-band survey #

#NISP Y sequence #Total sequence length: 12h 5m 20s

#Kev:

#Nstack +ve, Texp +ve (Image being taken by this instrument) #Nstack -ve, Texp +ve (Image being taken by other instrument) #Nstack -ve, Texp -ve (No image is being taken, but something else is taking # time e.g. a slew or readout)

#Additional time is inserted between images of stacks by exigere for readout #and dithering.

#The readout time for this can be set in the .observatory observatory files. #All other readout, slewing, filter changes etc must be specified here.

#Field	Nstack	Техр	Sum	Description				
#VIS Set								
#Field	Nstack	Техр	Sum	Description				
Θ	-1	-10	10	Shutter open	VIS F0			
Θ	-1	540	550	Expose	VIS F0			
Θ	-1	-10	560	Shutter close	VIS F0			
Θ	-1	- 85	665	Slew + read	VIS F0			
1	-1	-10	675	Shutter open	VIS F1			
1	-1	540	1215	Expose	VIS F1			
1	-1	-10	1225	Shutter close	VIS F1			
1	-1	- 85	1310	Slew + read	VIS F1			
2	-1	-10	1320	Shutter open	VIS F2			
2	-1	540	1860	Expose	VIS F2			
2	-1	-10	1870	Shutter close	VIS F2			
2	-1	-85	1955	Slew + read	VIS F2			
#NISP Y Set #5 second intrastack reads								
#Field	Nstack	Texp	Sum	Description				
		. enp	2 dill	20200 2002000				
Θ	3	90	2235	Expose	NISP Y F0			
Θ	-1	- 85	2320	Slew + read	NISP Y F0			
1	3	90	2600	Expose	NISP Y F1			
1	-1	- 85	2685	Slew + read	NISP Y F1			
2	3	90	2965	Expose	NISP Y F2			

- Fully customizable observing sequences
- Multiple groundand space-based observatories
- Multiple filters

3. Simulated Lightcurves

 $M_{\rm l} = 0.88 M_{\odot}$ $M_{\rm p} = 1 M_{\oplus}$ $a = 2.92 {\rm AU}$ $\Delta \chi^2 = 1009.71$

Normalized flux

3. Simulated Lightcurves

 $M_{\rm l} = 0.16 M_{\odot}$ $M_{\rm p} = 0.1 M_{\oplus}$ $a = 1.49 {\rm AU}$ $\Delta \chi^2 = 547.157$

Normalized flux

3. Simulated Lightcurves

 $M_{\rm l} = 0.44 M_{\odot}$ $M_{\rm p} = 0.03 M_{\oplus}$ $a = 9.15 {\rm AU}$ $\Delta \chi^2 = 1327.25$

Normalized flux

4. Expected Yields

Euclid additional science survey:

- 300 day survey, split into 5 yearly seasons
- 60 days continuous observations each season
- 3x0.5deg² fields, each observed every 18 mins
- Observations in other bands every 12 hours

Total detections (-1.5<log(M/Me)<3): Default: 390 RV: 307 uL: 438 uL saturated: 267

4. Different mass functions

RV: α Cumming et al 2008, f Gould et al 2010. μ L: Cassan et al 2012

4. M-a sensitivity

4. What planets will Euclid probe?

4. Different scenarios

Conclusions

- Euclid can do exellent exoplanet science
- Euclid will detect Earth-mass planets expect
 ~4 per month of observations
- Euclid has sensitivity below Mercury-mass may not have sufficient rate, depends on mass function
- Euclid will complete the census of low-mass exoplanets stared by Kepler

What's next?

- Calculate expected parameter errors + FoM
- Optimize survey for planetary mass measurements, not detections
- Use MaBµLS to fully optimize a Euclid microlensing survey
- Apply MaBµLS to WFIRST and ground-based surveys (OGLE-IV, VVV, KMTNet)