Direct Imaging of Extrasolar Planets

Bruce Macintosh (LLNL)

HR8799: Christian Marois (HIA), Travis Barman (Lowell), Quinn Konopacky (LLNL/Toronto), Ben Zuckerman (UCLA), Jennifer Patience (Exeter), Inseok Song (Georgia), Dan Fabrycky

Gemini Planet Imager:

LLNL: Dave Palmer, Lisa Poyneer, Brian Bauman, Dmitry Savransky UC Berkeley: James Graham, James McBrid UC Santa Cruz: Don Gavel, Daren Dillon, Sandrine Thoma JPL: Kent Wallace, Mitch Troy UCLA: James Larkin, Jeff Chilcote, Mike Fitzgerald Gemini: Stephen Goodsell, Markus Hartung HIA: Les Saddlmyer, Jennifer Dunn, Darren Erikson AMNH/STScl: Ben Oppenheimer, Remi Soummer, Anand Sivaramakrishnan Additional science team leads: Paul Kalas, Rene Doyon, Inseok Song, Dan Fabrycky, Travis Barman, Mark Marley, Quinn Konopacky, Jennifer Patience, Franck Marchis

Outline

- Motivation (generic and direct-imaging specific)
- Direct imaging with current AO: Keck search
- HR8799 system
- Comparison of science reach to microlensing
- Near-future: Gemini Planet Imager
 - Science plans for the GPI campaign
- Future: AO on Extreme Large Telescopes
 - Science reach
- Far future: Space-based planet detection
 - Information microlensing can provide to plan space missions

Formation history is encoded in distribution: Core Accretion + Migration

Orbital scattering in 3 body systems; Chatterjee et al. 2008

10-m W.M. Keck II Telescope

Keck AO Image of a bright star

Keck planet search

Rotation

Angular Differential Imaging (ADI)

2009-2010 observations

Properties of the star

Gratuitous comparison to our solar system

Luminosity vs age ("hot start")

Nominal mass 5+-2 M_J 7+-3 M_J 7+-3 M_J 7+-3 M_J

Extracted spectra of HR8799b

Atmosphere of HR8799 planets

Estimating the orbits

Orbital parameters

Stability vs mass (FM2010)

Formation?

Core accretion + migration +produces reasonably circular orbits +can trap into resonances -very hard to produce big planets this far out with plausible disks -planet brightness not consistent with "cold start" **Core accretion + scattering** +can produce range of orbital separations +evidence for dynamical instability -predicts generally very elliptical orbits

-needs extra planets

Disk instability
+can produce big planets at wide separations
+can produce range of inclinations
+planet brightness consistent with hot start
-has trouble producing objects this small
-no evidence of large population of high-mass equivalents

Other direct images

Wide-orbit massive planets more common around early-type stars?

400mas

Sum of completeness for every star ="if every star had a planet..."

Survey comparison

International Deep Planet Survey (A stars) from **Vigan et al (2012 submitted) and Galichier et al** (**2012 in prep**); see also LaFrenier et al, Biller et al, etc.

PLANET from Cassan et al 2012

Mass (ME

HR8799 system

Gemini Planet Imager

Multiwavelength data cube

Christian Marois, HIA

Gemini Planet Imager Exoplanet Survey

Gemini has allocated 890 hours for a 3 year exoplanet survey campaign **GPIES kickoff meeting** October 2011

Target identification

Survey comparison

Future microlensing scaled from PLANET - J.P.Beaulieu priv.com

GPIES from McBride et al 2011

Orbital eccentricity measurements

Distinguishing high and low-eccentricity populations CIAn 0.25 f(e) = 2eAll Ecc = 00.20 0.15 Probability 0.10

0.05

0.00 L

0.2

0.4

Eccentricity

0.6

0.8

1.0

Future: Thirty Meter Telescope

//.

capabilities

11.

Space coronagraphs

DaVi

Occultor missions

Jeremy Kasdin

L

Space coronagraphs

1.5-m advanced coronagraph

4-m advanced coronagraph

4 M Le Casson sons - Ul and ear

Mass (ME

//

Mass (ME

Microlensing Planet Finder (Dave Bennett)

¹

Conclusions

- Direct imaging and microlensing (and other techniques) have significant synergy
 - Complete picture of planet distribution from 0.05 to 500 AU
- Different techniques provide different windows beyond distribution
 - Composition from imaging (or transit spectra)
 - Mass/radii comparisons
 - Planet population as a function of age
- HR8799 system shows ability to characterize through dynamics, spectra
 - Future free-floating planets?
- Both microlensing and direct imaging have shown their promise and with next-generation surveys will achieve statistical maturity