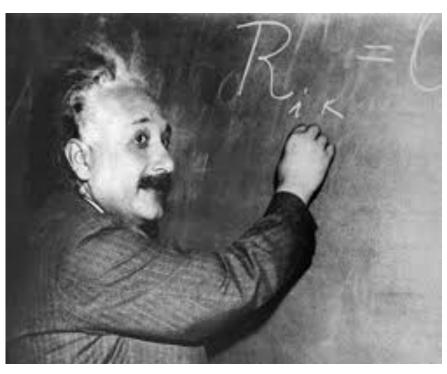


WFIRST Project Activities

Neil Gehrels WFIRST Project Scientist NASA-GSFC

IPAC – Wide-Field IR Science February 15, 2012

Outline


- Project history
- Concept development and costing
- Scientific requirements flowdown
- GSFC-JPL-IPAC team
- Detector development
- Simulations
- Schedule to launch
- Science outreach

General Relativity

Einstein General Relativity connection to WFIRST through

- field equations, cosmological constant
- gravitational bending of light (weak lensing, microlensing)

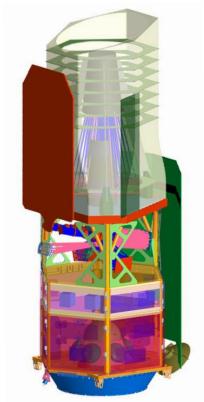
$$G_{\mu\nu} = (8\pi G/c^4) T_{\mu\nu}$$

WFIRST History

JDEM

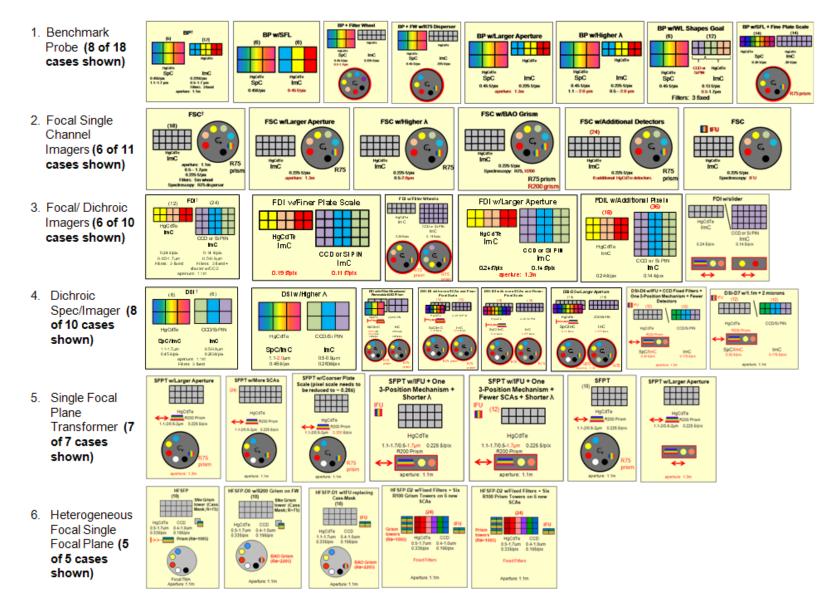
- 1998: Discovery of accelerated expansion of the universe
- 2006: 3 teams selected for study (ADEPT, DESTINY, SNAP)
- 2008: NASA & DOE formulate JointDEM as a strategic mission
- 2009: JDEM proposed to Astro2010

MPF


- 1998: Mather suggests space application of microlensing at Notre Dame
- 2000-2001 GEST proposed to Discovery and MIDEX
- 2004-2006: MPF proposed as Explorer and Discovery
- 2009: MPF proposed to Astro2010

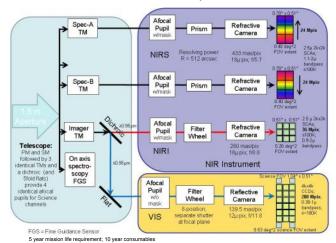
NIRSS

- 2009: NIRSS proposed to Astro2010
- 2009: 14 white papers submitted on wide-field IR survey science

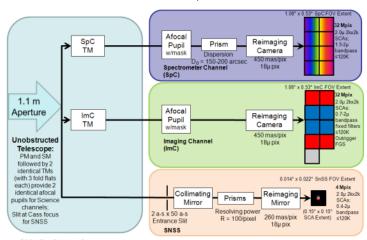

WFIRST

- 2010: WFIRST ranked 1st in large mission category by Astro2010
- 2011: Science Definition Team formed to study WFIRST
- 2011: Nobel prize for acceleration of universe
- 2011: Free-floating planets detected by ground microlensing
- 2012: WFIRST science conference at IPAC

JDEM-Omega

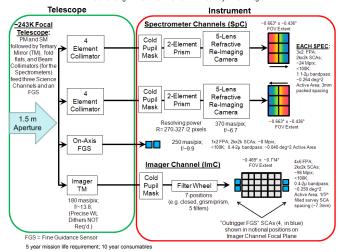

Over 80 Concepts Developed

JDEM - WFIRST DRM Evolution

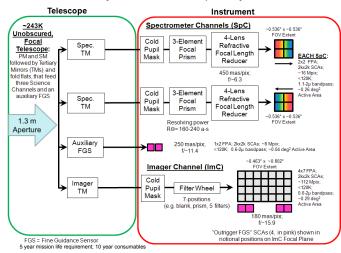

IDECS 2009

BAO / RSD / SNe / WL / Surveys

Probe 2010

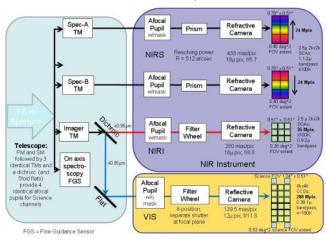

BAO / RSD / SNe / WL photo-Z's

FIGS = Fine Guidance Sensor SNSS = Supernova Slit Spectrometer Single String Payload and Spacecraft; 3 Year Mission Life Requirement


JDEM Omega 2009

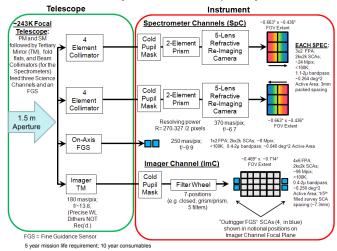
Micro-lensing / BAO / RSD / SNe / WL / Surveys / GI Program

IDRM 2011

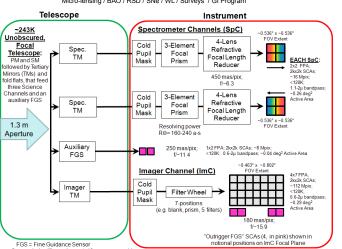

Micro-lensing / BAO / RSD / SNe / WL / Surveys / GI Program

JDEM - WFIRST DRM Evolution

IDECS 2009

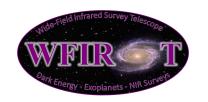

BAO / RSD / SNe / WL / Surveys

magnification


JDEM Omega 2009

Micro-lensing / BAO / RSD / SNe / WL / Surveys / GI Program

IDRM 2011


Micro-lensing / BAO / RSD / SNe / WL / Surveys / GI Program

"/p

0.45

0.18

Independent Cost Estimate

- Performed by Aerospace Corp
- CATE = Cost And Technical Evaluation
- Input was Interim Design Reference Mission
- Aerospace cost estimate is within 7% of \$1.6B cost estimate from the Decadal Survey
- "Project has presented a feasible technical design consistent with stated science goals"

Requirements Flowdown

- Substantiation that WFIRST can achieve NWNH science
- Traces science requirements from top level objectives

WFIRST Science Objectives:

- Complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs
 to all of the planets in our Solar System except Mercury.
- Determine the expansion history of the Universe and its growth of structure so as to test explanations of its apparent accelerating expansion including Dark Energy and modifications to Einstein's gravity.
- -3) Produce a deep map of the sky at NIR wavelengths, enabling new and fundamental discoveries ranging from mapping the Galactic plane to probing the reionization epoch by finding bright guasars at z>10.

WFIRST Survey Capability Rgts

Exoplanet (ExP) Microlensing Survey

- Planet detection capability to ~0.1 Earth mass (M_®)
- Detects ≥ 125 planets of 1 M_⊕ in 2 year orbits in a 500 day survey, with the masses of ≥ 90 of these planets being determined to better than 20% *
- Detects ≥ 25 habitable zone† planets (0.5 to 10 M⊕) in a 500 day survey *
- Detects ≥ 30 free floating planets of 1
 M⊕ in a 500 day survey *
- * Assuming one such planet per star † 0.72-2.0 AU, scaling with the square root of host star luminosity

Dark Energy Surveys

BAO/RSD Galaxy Redshift Survey

- ≥11,000 deg² sky coverage per dedicated year (*WIDE* Survey mode)
- Goal of ≥2,700 deg²/yr "DEEP" Survey acquired during the WL Survey
- A comoving density of galaxy redshifts at z=2 of 4.9x10°3 Mpc³ (WIDE) or 2.1x10°4 Mpc³ (DEEP). [The source density is higher at lower redshifts, peaking at z=1 at 2.2x10°4 Mpc³ (WIDE) or 5.9x10°4 Mpc³ (DEEP)]
- Redshift range 0.7 ≤ z ≤ 2
- Redshift errors σ₂≤0.001(1+z), equivalent to 300 km/s rms
- Misidentified lines ≤TBD% per source type, ≤10% overall; contamination fractions known to 0.2% (TBR)

Supernova SNe-la Survey

WFIRST Data Set Rgts

Exoplanet Data Set Rqts

- Observe ≥ 2 square degrees in the Galactic Bulge at ≤ 15 minute sampling cadence
- 5/N ≥100 for J-band magnitude ≤20.5 sources
 ≤0.3" imaging angular resolution
- . Sample light curves with filter W149
- Monitor color with filter F087, 1 exposure every 12 hours
- Minimum continuous monitoring time span: ~60 days
- Separation of ≥4 years between first and last observing seasons

Dark Energy Data Sets

BAO/RSD Data Set Rgts

- Spectrometer
- Slittess prisr
- · Dispersion R_⊕ = 195 (TBR) 240 arcsec
- S/N ≥7 for r_{ef} = 300 mas for Hα emission line flux at 2.0 µm ≥1.5x10⁻¹⁸ erg/cm²-s (DEEP) or 3.1x10⁻¹⁸ erg/cm²-s (WIDE)
- Bandpass 1.116μm ≤λ≤ 2.0 μm
- Pixel scale ≤ 450 mas
- System PSF EE50% radius 400 mas at 2 µm
- ≥3 dispersion directions required, two nearly opposed
- · Imager (for redshift zero reference)
- 5/N≥10 for Has≤23.5
- Approximately equal time in filters F141 and F178

Supernova Data Set Rgts

· Minimum monitoring time-span for an individual

WFIRST IDRM Design/Operations Overview

Key WFIRST IDRM Observatory Design Parameters

- Off-axis focal telescope; 1.3m diameter telescope aperture
- ≤240 K telescope optical surfaces
- Bandpass 0.6 2.0 μm
- Pointing jitter ≤40 mas rms/axis
- Coarse Pointing Accuracy <~3 arcsec rms/axis
- Fine (Relative/Revisit) Pointing Accuracy <~25 mas mms/axis [TBR]
- ACS telemetry downlinked for pointing history reconstruction

Imager Channel (ImC): No re-imager; ~180K Pupil Mask

- ImC Pupil Mask stop diameter: 1.275 m
- ImC Effective Area: 0.811 m² (avg for all filters including QE and roll off)
- 5 band parfocal filter set on wheel, driven by ExP, SNe, WL
- R=75 (2-pix) parfocal, zero deviation prism + "dark" (TBD) position in same wheel
- ImC R75 Slitless Prism Effective Area: 0.782 m²
- ImC FPA: 4x7 HgCdTe 2k x 2k 5CAs, 2.1µm, ≤120K, 180 mas/pix
- FOV (active area) = ~0.291 deg²; Bandpass 0.6 2.0 μm
- 4 Outrigger FG5 SCAs mounted to ImC Focal Plane Assy (FPA)
- WFE is diffraction limited at 1um
- TBD requirement on Intrinsic PSF ellipticity ... relate to knowledge rgt.
- Slitless Spec Channels (SpCs): ~180K Pupil Mask
- 2 oppositely dispersed SpCs provided, otherwise ~identical
- · Optical Path: pupil mask stop, focal prism, refractive focal length reducer
- Bandpass 1.1-2.0µm; R_☉ = 160 (TBR) 210 arcsec
- SpC Pupil Mask stop diameter: 1.27 m
- SpC Effective Area: 0.731 m² (average including QE)
- SpC FPA (1 of 2): 2x2 HgCdTe 2kx2k 5CAs, 2.1 µm, ≤120K, 450 mas/pix
- FOV (active area) = ~0.260 deg² (per SpC)
- Aux FGS: 2 SCAs: controls Pitch/Yaw when ImC prism is in use

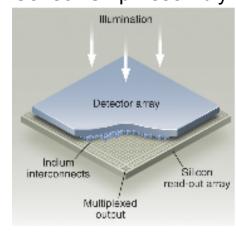
Key WFIRST IDRM Operations Concept Parameters

- . 5-year mission life, but consumables required for 10 yrs
- Science Field of Regard (FOR): 54 to 126 pitch off the Sun, 360 yaw
- Roll ±10°; SNe observations inertially fixed for ~90 days for viewing near the entirity role/s)
- Gimbaled antenna allows observing during downlinks
- Slew/settle times: ~16 s for dithers, ~38 s for ~0.7 slews

Workshare Assignments

- WFIRST Project resides in Exoplanet Exploration Program (ExEP) at JPL and is managed by GSFC
- WFIRST Project work is joint effort between GSFC and JPL
- GSFC responsibilities
 - Project management
 - System engineering
 - Instrument & spacecraft management

- Telescope design & implementation
- Participate in system engineering
- Data center (IPAC)
- HQ program oversight
 - Program Executive: Lia LaPiana
 - Program Scientist: Rita Sambruna



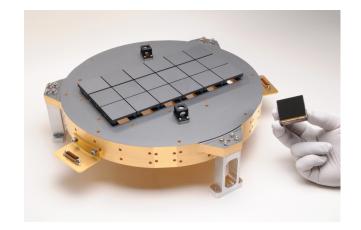
Detector Program

- H2RG detectors
 - H >> HAWAII = HgCdTe Astron. Wide Area IR Imager
 - 2 >> 2048 x 2048 pixels
 - R >> reference rows & columns to correct bias fluctuations
 - G >> guiding function, selectable window for guide star
- Space H1Rs used on HST. Space H2RGs developed for JWST
- Goals of WFIRST program
 - Larger mosaics than JWST
 - Silicon carbide support structure
 - H4RG development

Sensor Chip Assembly





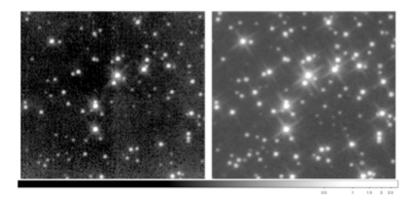

Detector Array EDU

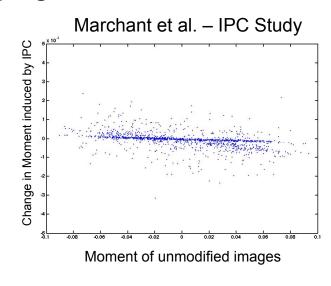
 Development of 3x6 HgCdTe Engineering Development Unit detector array at GSFC

EDU Focal Plane Array

 Silicon carbide mounting of HgCdTe detectors is under development and will be space qualified with EDU

SDT with H4RG Array

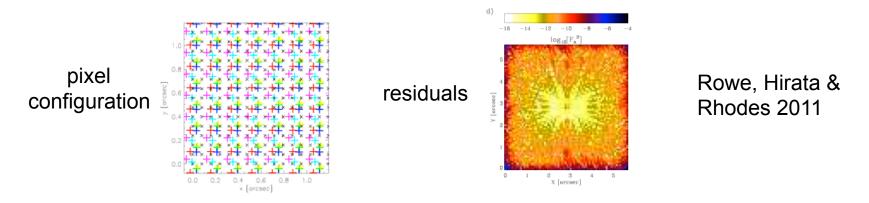



3 Feb 2012

HgCdTe Performance Studies

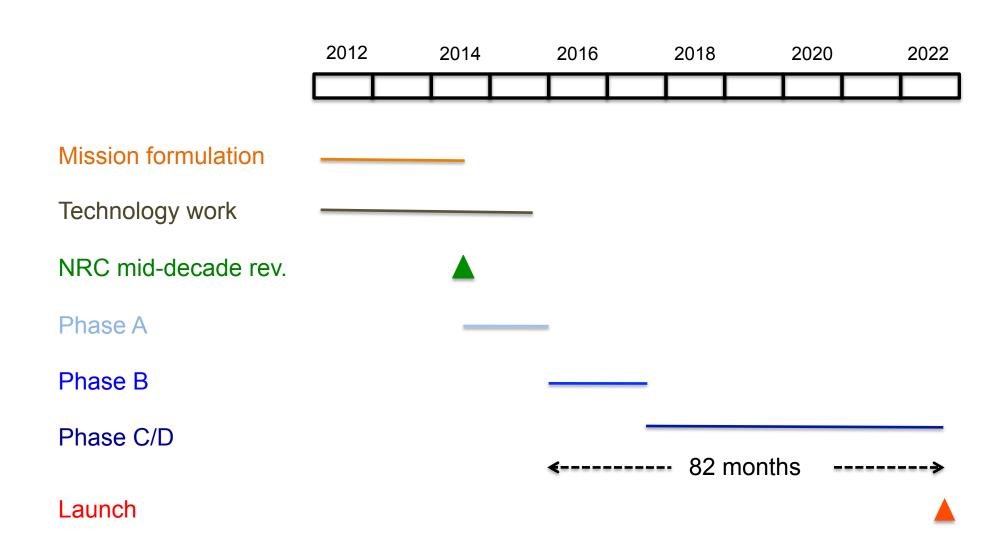
- Potential issues with HgCdTe capabilities for WL shapes
 - Interpixel capacitance (IPC)
 - Persistance
 - Linearity & reciprocity
- Laboratory test program in place to assess issues (JPL, Caltech, Goddard, Teledyne, STScI, U Hawaii)
- Preliminary results are encouraging

Riess – HST WFC3 Linearity Study



Simulations

- Pixel scale study for WL at JP/Caltech (Rhodes, Hirata, Rowe)
 - Shapelet simulations, image combination software, dithering study
 - Results show that 0.18 "/pixel of WFIRST Imager is adequate for WL
 - WL image simulation software will be available to community via IPAC



- Sky tiling sims for BAO & SNe at GSFC (Kruk)
- Microlensing sims at Notre Dame/OSU (Bennett, Rhie, Gaudi)

WFIRST Notional Schedule

Science Outreach

- Science calculators and estimators being deployed to the community through IPAC
- WFIRST booth developed and displayed at conferences
- IPAC Conference
- WFIRST "Meeting-In-A-Meeting"
 June 12-13 AAS in Anchorage
- Need for a brochure

