MOA 2010-BLG-477Lb

From planet detection to mass determination

Observations

- MOA August 2, 2010 (HJD'=5410.9)
- OGLE
- high magnification candidate
- follow-up: PLANET, μFUN, RoboNet,
 MiNDSTEp: >20 telescopes (⊃ASTEP Dome C)
- low-res spectrum at DuPont 2.5m
- IRSF and CTIO 2011

Image reduction

- off-line reduction with pySIS (image subtraction using numerical kernel) for 7 telescopes
- $A_{\text{max}} = 400$
- 2 spikes (5420.4, 5420.9), 2 bumps (5421.0, 5422.4)

Strategy for M

- Equations: $\theta_{\rm E}^2 = \kappa \, \pi_{\rm rel} \, M \qquad \pi_{\rm E}^2 = \frac{\pi_{\rm rel}}{\kappa \, M}$
- As θ_E is well-determined, but not π_E , M cannot be well measured
- \bullet θ_E is large, so either M large or D_L small; both imply bright lens, but no detection; this gives upper limits both to M and D_L
- An upper limit on π_E provides lower limits on lens mass and distance

Modeling

- Importance of a correct assessment of photometric errors: rescaling scheme
- Finite-source effect and limb darkening
- \circ Static binary model: first step: grid search (s, q, α) + downhill χ^2 minimization (MCMC)
- Result: only one minimum: s=1.12, q=0.0024
- Second step: MCMC for all 7 parameters
- Second-order effects: microlensing parallax and orbital motion

Measurement of θ_E

- spectrum: $T_{eff} = 5950 \pm 150 \text{ K}$, log g = 4.0 assuming solar metallicity; corresponds to $(V-I)_0 = 0.65 \pm 0.04$
- \circ red clump method: $(V-I)_0 = 0.55 \pm 0.05$
- surface-brightness method then gives angular source radius: $\theta_* = 0.79 \pm 0.06 \mu as$
- \circ model gives $\rho_* = 5.76$ (3) 10^{-4}
- \bullet so $\theta_E = 1.38 \pm 0.11$ mas and $M\pi_{rel} = 0.233 \pm 0.036$

Parallax and orbital motion

- Two independent modeling efforts: ours: ω , ds/dt and posterior check of bound orbit, vs. Bennett (circular orbit of period T_{orb})
- Post-bayesian analysis from raw MCMC adding Galactic model and Keplerian constraints

Lens flux limits

- measured blend corresponds exactly to an OGLE-III star: I=17.446±0.052 vs. I_b=17.443±0.031: no contribution from lens
- analysis of good-seeing OGLE-III images spanning 3.3 yr shows no residual at target position: given the large relative proper motion (10.3±0.8 mas/yr), this again proves the faintness of the lens
- conclusion: M < 1 M_{sun}, so D_L < 2.8 kpc

Constraints from parallax

- \odot parallax-only model improves χ^2 by 8.6 only
- parallax and orbital motion model improves it by 54.4: second-order effects are detected
- \circ confirmed by differences between $u_0>0$ and $u_0<0$ solutions
- Φ but difficult to disentangle: degeneracy $π_{E,perp}$ and ω: both correspond to a trajectory curvature
- @ lightcurve excludes π_E > 1.3, so M > 0.13 M_{sun} and D_L > 0.5 kpc

Post-bayesian analysis

- Galactic model, Jacobian transformations and Keplerian constraints as used in Batista et al. (2011)
- Independently favor large lens mass and distance, but must remain compatible with lens flux limits

Conclusions

- mass distribution peaks at $M_L=0.67^{+0.33}_{-0.13}$ corresponding to $M_p=1.5^{+0.8}_{-0.3}$ M_{JUP}
- ø lens distance: D_L=2.3±0.6 kpc
- semi-major axis a between 1 and 5 AU

Perspectives

- adaptive optics telescope time obtained at Keck, VLT and Subaru to measure the lens +source flux: 0.5 M_{sun} lens as bright as source, 0.1 M_{sun} lens produces 0.5 mag additional light
- very sensitive to third body (similar to OGLE 2006-BLG-109Lbc)
- second-order effects degeneracy shows the need of very accurate photometry, probably only obtainable from space (WFIRST, EUCLID)