Space-Based Imaging Astrometry: Life with an Undersampled PSF

Jay Anderson STScI Feb 15, 2012

Overview of the Talk

- Astrometry with HST
 - 3 critical issues
 - Science
 - General
 - Microlensing
- Extensions to WFIRST

Astrometry with HST

- One of the original selling points
 - FGS: always planned
 - Also intended imaging astrometry

Several challenges

- 1) Undersampling → PSFs
- 2) Distortion (several sources)
- 3) Differential astrometry → Transformations
 - took several years to address these issues.

Goal of talk: an appreciation of the issues and possibilities

Astrometry:

Fundamental limitations

Poisson statistics

- Gaussian PSF $\delta x \sim \sigma_x / \sqrt{N}$
- Best position: straight centroid

Pixelization

- Complication: loses information
- Simple centroid no longer works
- Requires good PSF

WFC3/UVIS SWEEPS FIELD

Illustration of Undersampling

Undersampling and Astrometry

Impossible?

- A point source has "no hair"
- Overconstrained problem
 - 3 parameters (x,y,f), ~9 pixels
- Minimal requirements: "slosh"
 - Only pathological if FWHM < 1 pixel

What is possible?

- 0.005-0.01 pixel possible $\sim (S/N)^{-1}$
- Need good PSF model
- Need good dithering

Limitations

- Individual images; do not use stacks
- Harder in crowded/sparse fields
- Ideal in "semi-crowded" regime

PSFs: Photometry -vs-Astrometry

- Photometry: how much flux is there? (SUMS)
- Astrometry: where is the flux? (DIFFERENCES)
- Shape: exactly where is flux... (DIFFs of DIFFs)
 - All require good PSF, but they make different demands
- PSF Modeling
 - Ground
 - Variable-seeing dominated
 - Gaussian-fitting models, DAOPhot
 - HST
 - Stable but undersampled, new regime
 - Exquisitely precise models possible

What do we mean by the PSF?

- ψ_{INST}(Δx,Δy): the "Instrumental" PSF:
 - The PSF as it hits the detector
 - Good theoretical motivations: Gaussians, Moffat
 - See ψ_{INST} only *indirectly* in images
 - Must deconvolve the PSF from the pixels
 - Saving grace: often solve for limited set of parameters
- $\psi_{\mathsf{EFF}}(\Delta x, \Delta y)$: the "Effective" PSF:
 - The PSF after pixelization: $\psi_{\mathsf{EFF}} = \psi_{\mathsf{INST}} \otimes \Pi$
 - Empirical: no natural basis function to describe
 - Tod Lauer's 1999 tutorial in PASP on image reconstruction
 - **OLD**: Pixels as light buckets
 - NEW: Pixels as point-samplings of a continuous scene
 - Epiphany: we never deal with anything BUT the effective PSF
 - See ψ_{EFF} directly in images
 - Can measure ψ_{EFF} directly from images

The "Effective" PSF

- What it represents:
 - Fraction of light that falls in a pixel, relative to the center of the star
- Modeling images:

OLD:
$$P_{ij} = S + F_* \times \int \int_{x,y \in (i,j)} \psi_{INST}(x-x_*,y-y_*) dx dy$$
NEW:
$$P_{ij} = S + F_* \times \psi_{EFF}(i-x_*,j-y_*)$$

How to "see" it;

$$\psi_{\mathsf{EFF}}(\Delta x, \Delta y) = (\mathsf{P}_{\mathsf{i}\mathsf{j}} - \mathsf{S})/\mathsf{F}_{\mathsf{*}}$$

- Where: $\Delta x = i x_*$, etc
- We have to know (x_{*},y_{*}) and F_{*}

×	×	×	×	×
×	×	×	×	×
×	×	×	×	×
×	×	×	×	×
×	×	×	×	×

IMAGE FRAME

- A single star has an array of pixels about its center.
- Each pixel contains a fraction of its flux.
- Each pixel reports ψ_{E} at one point in ψ_{E} 's domain.

How two stars sample $\psi_{E}(\Delta x, \Delta y)$

- In general, the two stars will be at different pixel phases.
- This gives us a different array of samples of ψ_{E}

How three stars sample $\psi_{E}(\Delta x, \Delta y)$

• A third star will give yet more variety in our sampling of ψ_{E}

How 200 stars sample $\psi_{E}(\Delta s, \Delta y)$

 A large number of stars gives us an almost even coverage of ψ_E across its 2-D domain.

How to solve for $\psi_{E}(\Delta x, \Delta y)$

- A regularly-spaced array of grid-points
- Specify value of ψ_{E} at those points to best-fit the data.

"Seeing" ψ_{EFF} Directly

The model of $\psi_{E}(\Delta x, \Delta y)$

• Tabulated values of ψ_E at this array of points across its domain.

How to use $\psi_{E}(\Delta x, \Delta y)$

Need to know:

"What fraction of light should land in a pixel, if the pixel is centered at (Δx, Δy) relative to the point source?"

Need to interpolate:

→ Use bi-cubic interpolation

1) How to find the PSF?

2) How to use the PSF?

1) How to find the PSF?

2) How to use the PSF?

Fitting for Flux and position:

$$P_{ij} = S + F_* \times \psi_{ij}$$

- Nice, linear equation!
- Which pixels to use?

1) How to find the PSF?

2) How to use the PSF?

Fitting for Flux and position:

$$P_{ij} = S + F_* \times \psi_{ij}$$

- Nice, linear equation!
- Which pixels to use?

PSF: Finding -vs- Using

Degeneracy:

- Finding ψ_{FFF} requires (x,y,f)
- Finding (x,y,f) requires ψ_{EFF}

Iteration

Dithers break the degeneracy!

Higher-Level PSF Issues...

Spatial variability...

Higher-Level PSF Issues...

Spatial variability...

Array of PSFs for F606W ACS

Higher-Level PSF Issues...

Spatial variability...

Core intensity varies by $\pm 10\%$ over scales of ~ 500 pixels.

Higher-Level PSF Issues... Pre-SM4

- Spatial variability
- Time variability
 - Breathing: +/- 2%
 - Hybrid models:
 - PSF(x,y;t)=PSF(x,y)+PSF(t)
 - Good for ACS, ok for UVIS
 - Long-term variability (ACS)
- How to define "center" ?
 - Peak? Centroid? Point of Symmetry?
 - Cross-talk with distortion
- Pixel-response function: $\Pi(\Delta x, \Delta y)$
 - Included naturally
- Color variability: ~0.002 pixel (extreme: 0.02 pixel)

Post-SM4

Distortion

WFC/ACS DISTORTION

Sources of Distortion

1) Geometric optics:

- Linear "skew": 500 pixels over 2000
 - → Parallelogram pixels
- Non-linear: 50 pixels over 2000

2) Filters introduce distortion

- Offsets, scale changes
- "Fingerprint" of ~0.05 pixel

3) Detector "stitching" defects

- WFPC2: every 34.1333th row 3% shorter.

 In the state of the state o
- ACS/WFC: pattern every 68.2666th column
- WFC3/UVIS: 2-D zones

4) CTE losses...

ACS Solution now available (UVIS coming soon)

UVIS

Need empirical approach...

Plot everything against everything else...

ISSUE#1: Undersampling/PSFs

ISSUE#2: Distortion

ISSUE#3...

Transformations

All HST astrometry is differential astrometry

- → Guide-star precision ~ 0.5" (improved from 1.5"!)
- → No reference stars in typical field
- → We never know the true pointing

Always need to define a *local* reference frame

- → Pixels/positions have only relative meaning.
- → Choosing a frame/population you know something about
 - \rightarrow absolute $\mu = 0$ (galaxies)
 - \rightarrow average μ = same (clusters)
 - → average μ = unchanging (field)
- → Allow for breathing effects
 - → 6-param transformations, or go local

ISSUE#1: Undersampling/PSFs

ISSUE#2: Distortion

ISSUE#3: Transformations

Good News: All manageable issues

Undersampling/PSFs:

- → Ways to model accurately, get 0.01-pixel positions
- → Libraries available, usually sufficient

Distortion:

→ Stable, model available, small variations, ~ 0.01 pixel

Transformations:

→ Can optimize for program

0.01 pixel error per exposure, can be made random

Bad news:

No one-size-fits-all solutions...

Astrometric Science with HST...

- 1) Cluster Membership
- 2) Absolute motions
- 3) Internal motions in clusters
- 4) Microlensing applications

1) Bulk motions:

NGC6397

PI-Rich, UCLA

Proper-Motion Cleaning

4) Microlensing Applications (breaking degeneracies)

- 1) Color-dependent centroid shift (1st moment)
 - Color difference between lens/source $\rightarrow \mu$

f × μ = 0.6 mas/2yr

Bennett et al 2006

OGLE-2003/BLG-235

MOA-2003/BLG-53

2) De-blending (measure 2nd moment)

3) Astrometry during the event

2) De-blending:

OGLE-2005-BLG-169

Epoch 1 HST Observations

WFC3/UVIS Image

- OGLE-2005-BLG-169L
 -Wiki: 2000 kpc "bulge" star
- -Uranus-mass extrasolar planet

HST IMAGES

- -GO-12541 (PI-Bennett)
- **-2 orbits Oct 2011**
- 6xB, 8xV, 7xI
- decently dithered

i 1

 i_2

 i_3

i⊿

i₅

i₆

 i_7

Stacked F814W Observations

Zoomed F814W Stack

Source looks elongated relative to neighbors

Stacked F814W Observations

Subtracted F814W Stack

Residuals in X when we subtract a PSF from each image and stack...

Subtracted Neighbor...

PSF IS GOOD!

Almost *no* residuals
When we
Subtract a
PSF from a
(brighter)
neighbor

Subtracted F814W Stack

This means that the residuals of the target-star subtraction are *real*.

2-Source Subtracted F814W

We get very good subtraction residuals when we fit for *two* sources

Two-source solution:

- Offset consistent in the B, V and I data:
 - $-\Delta x = 1.25$ pixels = 50 mas ($\Delta T = 6$ yrs)
 - $-\Delta y = 0.25 \text{ pixel} = 10 \text{ mas}$
 - FLUX: (left) (right)
 - F814W 3392 e⁻ 3276 e⁻
 - F555W 2158 e⁻ 3985 e⁻
 - F438W 338 e⁻ 1029 e⁻

3) Astrometry during the event

- Long-duration events: BH? NS? WD? BD?
- Kailash Sahu (PI)
 - Some long-duration event follow ups with HST
 - OGLE-2007-BLG-224
 - MOA-2009-BLG-260
 - MOA-2010-BLG-235
 - MOA-2010-BLG-356
 - MOA-2010-BLG-482
 - GO-12586: Finding our own events
 - 192 orbits over 3 cycles

Schematic of event

Duration of event \propto mass $\times \mu$ Astrometric offset \propto mass

Photometry/Astrometry

Fast BH, NS, WD or slow BD?

OBSERVING STRATEGY

NUMBER OF TARGETS

- Each ACS field has ~200,000 stars
 - 50% have S/N > 100
- Each WFC3/UVIS field has 150,000 stars
- Total of > 1,500,000 stars

OBSERVING CADENCE

- Optimized for long-duration events
- One visit every 2 weeks over two 4-month windows
 - 64 visits per year
- **EXPECTATIONS**: (54 / 120 events "astrometric")
 - 18 events due to BHs
 - 14 due to NSs
 - 22 due to MS stars.... STARTS IN APRIL!

APPLICATIONS TO WFIRST

- HST programs: hard to get time!
 - WFIRST will do for all sources
- Success with HST PSF encouraging
 - Model static part
 - Perturb with time-variable part
 - Need "semi-crowded" star field
 - Construct basis functions for PSF / GC
 - Long stare
 - WL will ♥ μL!
 - Demo software (Sahu program)

Omega Cen: a Ground-Based Image (Lehman)

GB → ACS → UVIS → PMs